Skip to content
Snippets Groups Projects
channeltestproblem.hh 8.5 KiB
Newer Older
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 *
 * \brief Channel flow test for the staggered grid (Navier-)Stokes model
 */
#ifndef DUMUX_CHANNEL_TEST_PROBLEM_HH
#define DUMUX_CHANNEL_TEST_PROBLEM_HH

#include <dumux/material/fluidsystems/liquidphase.hh>
#include <dumux/material/components/simpleh2o.hh>
#include <dumux/material/components/constant.hh>
#include <dumux/material/fluidsystems/1p.hh>
#include <dumux/freeflow/navierstokes/problem.hh>
#include <dumux/discretization/staggered/freeflow/properties.hh>
#include <dumux/freeflow/navierstokes/model.hh>
namespace Dumux
{
template <class TypeTag>
class ChannelTestProblem;

namespace Properties
{
#if !NONISOTHERMAL
NEW_TYPE_TAG(ChannelTestProblem, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokes));
NEW_TYPE_TAG(ChannelTestProblem, INHERITS_FROM(StaggeredFreeFlowModel, NavierStokesNI));
// the fluid system
SET_PROP(ChannelTestProblem, FluidSystem)
    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);
#if NONISOTHERMAL
    using type = FluidSystems::OneP<Scalar, FluidSystems::LiquidPhase<Scalar, SimpleH2O<Scalar> > >;
    using type = FluidSystems::OneP<Scalar, FluidSystems::LiquidPhase<Scalar, Components::Constant<1, Scalar> > >;
};

// Set the grid type
SET_TYPE_PROP(ChannelTestProblem, Grid, Dune::YaspGrid<2>);

// Set the problem property
SET_TYPE_PROP(ChannelTestProblem, Problem, Dumux::ChannelTestProblem<TypeTag> );

SET_BOOL_PROP(ChannelTestProblem, EnableFVGridGeometryCache, true);
SET_BOOL_PROP(ChannelTestProblem, EnableGridFluxVariablesCache, true);
SET_BOOL_PROP(ChannelTestProblem, EnableGridVolumeVariablesCache, true);


#if ENABLE_NAVIERSTOKES
SET_BOOL_PROP(ChannelTestProblem, EnableInertiaTerms, true);
#else
SET_BOOL_PROP(ChannelTestProblem, EnableInertiaTerms, false);
#endif
}

/*!
 * \brief  Test problem for the one-phase (Navier-) Stokes problem in a channel:
   \todo doc me!
 */
template <class TypeTag>
class ChannelTestProblem : public NavierStokesProblem<TypeTag>
{
    using ParentType = NavierStokesProblem<TypeTag>;

    using GridView = typename GET_PROP_TYPE(TypeTag, GridView);
    using Scalar = typename GET_PROP_TYPE(TypeTag, Scalar);


    // copy some indices for convenience
    using Indices = typename GET_PROP_TYPE(TypeTag, Indices);
    enum {
        // Grid and world dimension
        dim = GridView::dimension,
        dimWorld = GridView::dimensionworld
    };
    enum {
        massBalanceIdx = Indices::massBalanceIdx,
        momentumBalanceIdx = Indices::momentumBalanceIdx,
        momentumXBalanceIdx = Indices::momentumXBalanceIdx,
        momentumYBalanceIdx = Indices::momentumYBalanceIdx,
        pressureIdx = Indices::pressureIdx,
#if NONISOTHERMAL
        temperatureIdx = Indices::temperatureIdx,
        energyBalanceIdx = Indices::energyBalanceIdx,
#endif
        velocityXIdx = Indices::velocityXIdx,
        velocityYIdx = Indices::velocityYIdx
    using BoundaryTypes = typename GET_PROP_TYPE(TypeTag, BoundaryTypes);
    using Element = typename GridView::template Codim<0>::Entity;
    using FVGridGeometry = typename GET_PROP_TYPE(TypeTag, FVGridGeometry);
    using FVElementGeometry = typename GET_PROP_TYPE(TypeTag, FVElementGeometry);
    using SubControlVolume = typename GET_PROP_TYPE(TypeTag, SubControlVolume);
    using GlobalPosition = Dune::FieldVector<Scalar, dimWorld>;
    using PrimaryVariables = typename GET_PROP_TYPE(TypeTag, PrimaryVariables);
    using SourceValues = typename GET_PROP_TYPE(TypeTag, NumEqVector);
    using TimeLoopPtr = std::shared_ptr<CheckPointTimeLoop<Scalar>>;

    ChannelTestProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry)
    : ParentType(fvGridGeometry), eps_(1e-6)
        inletVelocity_ = getParam<Scalar>("Problem.InletVelocity");
    bool shouldWriteRestartFile() const
    {
        return false;
    }

    /*!
     * \brief Return the temperature within the domain in [K].
     *
     * This problem assumes a temperature of 10 degrees Celsius.
     */
    Scalar temperature() const
    { return 273.15 + 10; } // 10C

    /*!
     * \brief Return the sources within the domain.
     *
     * \param globalPos The global position
     */
    SourceValues sourceAtPos(const GlobalPosition &globalPos) const
    }
    // \}
    /*!
     * \name Boundary conditions
     */
    // \{

    /*!
     * \brief Specifies which kind of boundary condition should be
     *        used for which equation on a given boundary control volume.
     *
     * \param globalPos The position of the center of the finite volume
     */
    BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
    {
        BoundaryTypes values;

        // set Dirichlet values for the velocity everywhere
        values.setDirichlet(momentumBalanceIdx);

#if NONISOTHERMAL
        if(isInlet(globalPos))
            values.setDirichlet(energyBalanceIdx);
        else
            values.setOutflow(energyBalanceIdx);
#endif

        // set a fixed pressure in one cell
        if (isOutlet(globalPos))
        {
            values.setDirichlet(massBalanceIdx);
            values.setOutflow(momentumBalanceIdx);
        }
        else
            values.setOutflow(massBalanceIdx);

        return values;
    }

    /*!
     * \brief Evaluate the boundary conditions for a dirichlet
     *        control volume.
     *
     * \param globalPos The center of the finite volume which ought to be set.
     */
    PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const
        PrimaryVariables values = initialAtPos(globalPos);
            values[velocityXIdx] = inletVelocity_;
#if NONISOTHERMAL
        // give the system some time so that the pressure can equilibrate, then start the injection of the hot liquid
            values[temperatureIdx] = 293.15;
#endif
        return values;
    }

    // \}

    /*!
     * \name Volume terms
     */
    // \{

    /*!
     * \brief Evaluate the initial value for a control volume.
     *
     * \param globalPos The global position
    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
        PrimaryVariables values;
        values[pressureIdx] = 1.1e+5;
        values[velocityXIdx] = 0.0;
        values[velocityYIdx] = 0.0;
#if NONISOTHERMAL
        values[temperatureIdx] = 283.15;
#endif

    void setTimeLoop(TimeLoopPtr timeLoop)
    {
        timeLoop_ = timeLoop;
        if(inletVelocity_ > eps_)
            timeLoop_->setCheckPoint({200.0, 210.0});
    }

    Scalar time() const
    {
        return timeLoop_->time();
    }

private:

    bool isInlet(const GlobalPosition& globalPos) const
    {
        return globalPos[0] < eps_;
    }

    bool isOutlet(const GlobalPosition& globalPos) const
    {
        return globalPos[0] > this->fvGridGeometry().bBoxMax()[0] - eps_;
    }

    bool isWall(const GlobalPosition& globalPos) const
    {
        return globalPos[0] > eps_ || globalPos[0] < this->fvGridGeometry().bBoxMax()[0] - eps_;