Newer
Older
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
* \ingroup ThreePTests
* \brief Test for the 3pni CC model.
#include <config.h>
#include <ctime>
#include <iostream>
#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/timer.hh>
#include <dune/grid/io/file/vtk.hh>
#include <dune/istl/io.hh>
#include <dumux/common/parameters.hh>
#include <dumux/common/dumuxmessage.hh>
#include <dumux/linear/amgbackend.hh>
#include <dumux/linear/linearsolvertraits.hh>
#include <dumux/nonlinear/newtonsolver.hh>
#include <dumux/assembly/fvassembler.hh>
#include <dumux/assembly/diffmethod.hh>
#include <dumux/discretization/method.hh>
#include <dumux/io/vtkoutputmodule.hh>
/*!
* \brief Provides an interface for customizing error messages associated with
* reading in parameters.
*
* \param progName The name of the program, that was tried to be started.
* \param errorMsg The error message that was issued by the start function.
* Comprises the thing that went wrong and a general help message.
*/
void usage(const char *progName, const std::string &errorMsg)
{
if (errorMsg.size() > 0) {
std::string errorMessageOut = "\nUsage: ";
errorMessageOut += progName;
errorMessageOut += " [options]\n";
errorMessageOut += errorMsg;
errorMessageOut += "\n\nThe list of mandatory arguments for this program is:\n"
"\t-TimeManager.TEnd End of the simulation [s] \n"
"\t-TimeManager.DtInitial Initial timestep size [s] \n"
"\t-Grid.LowerLeft Lower left corner coordinates\n"
"\t-Grid.UpperRight Upper right corner coordinates\n"
"\t-Grid.Cells Number of cells in respective coordinate directions\n"
"\t definition in DGF format\n"
"\t-SpatialParams.LensLowerLeft coordinates of the lower left corner of the lens [m] \n"
"\t-SpatialParams.LensUpperRight coordinates of the upper right corner of the lens [m] \n"
"\t-SpatialParams.Permeability Permeability of the domain [m^2] \n"
"\t-SpatialParams.PermeabilityLens Permeability of the lens [m^2] \n";
std::cout << errorMessageOut
<< "\n";
}
}
int main(int argc, char** argv)
{
using namespace Dumux;
// define the type tag for this problem
using TypeTag = Properties::TTag::TYPETAG;
// initialize MPI, finalize is done automatically on exit
const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);
// print dumux start message
if (mpiHelper.rank() == 0)
DumuxMessage::print(/*firstCall=*/true);
// parse command line arguments and input file
Parameters::init(argc, argv, usage);
// try to create a grid (from the given grid file or the input file)
GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
////////////////////////////////////////////////////////////
// run instationary non-linear problem on this grid
////////////////////////////////////////////////////////////
// we compute on the leaf grid view
const auto& leafGridView = gridManager.grid().leafGridView();
// create the finite volume grid geometry
using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
gridGeometry->update();
// the problem (initial and boundary conditions)
using Problem = GetPropType<TypeTag, Properties::Problem>;
auto problem = std::make_shared<Problem>(gridGeometry);
// the solution vector
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
SolutionVector x(gridGeometry->numDofs());
problem->applyInitialSolution(x);
auto xOld = x;
// the grid variables
using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
gridVariables->init(x);
// get some time loop parameters
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
auto dt = getParam<Scalar>("TimeLoop.DtInitial");
// intialize the vtk output module
using IOFields = GetPropType<TypeTag, Properties::IOFields>;
VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
IOFields::initOutputModule(vtkWriter); // Add model specific output fields
vtkWriter.addField(problem->getExactTemperature(), "temperatureExact");
vtkWriter.write(0.0);
// output every vtkOutputInterval time step
const auto vtkOutputInterval = getParam<int>("Problem.OutputInterval");
// instantiate time loop
auto timeLoop = std::make_shared<TimeLoop<Scalar>>(0, dt, tEnd);
timeLoop->setMaxTimeStepSize(maxDt);
// the assembler with time loop for instationary problem
using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables, timeLoop, xOld);
// the linear solver
using LinearSolver = AMGBiCGSTABBackend<LinearSolverTraits<GridGeometry>>;
auto linearSolver = std::make_shared<LinearSolver>(leafGridView, gridGeometry->dofMapper());
// the non-linear solver
using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
NewtonSolver nonLinearSolver(assembler, linearSolver);
// time loop
timeLoop->start(); do
{
// solve the non-linear system with time step control
nonLinearSolver.solve(x, *timeLoop);
// compute the new analytical temperature field for the output
problem->updateExactTemperature(x, timeLoop->time()+timeLoop->timeStepSize());
// make the new solution the old solution
xOld = x;
gridVariables->advanceTimeStep();
// advance to the time loop to the next step
timeLoop->advanceTimeStep();
// report statistics of this time step
timeLoop->reportTimeStep();
// set new dt as suggested by the newton solver
timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));
if (timeLoop->timeStepIndex()==0 || timeLoop->timeStepIndex() % vtkOutputInterval == 0 || timeLoop->finished())
vtkWriter.write(timeLoop->time());
} while (!timeLoop->finished());
timeLoop->finalize(leafGridView.comm());
////////////////////////////////////////////////////////////
// finalize, print dumux message to say goodbye
////////////////////////////////////////////////////////////
// print dumux end message
if (mpiHelper.rank() == 0)
{
Parameters::print();
DumuxMessage::print(/*firstCall=*/false);
}
return 0;
} // end main