Newer
Older

Bernd Flemisch
committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// $Id: tutorialproblem_coupled.hh 3783 2010-06-24 11:33:53Z bernd $
/*****************************************************************************
* Copyright (C) 2008-2009 by Melanie Darcis *
* Copyright (C) 2009 by Andreas Lauser *
* Institute of Hydraulic Engineering *
* University of Stuttgart, Germany *
* email: <givenname>.<name>@iws.uni-stuttgart.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version, as long as this copyright notice *
* is included in its original form. *
* *
* This program is distributed WITHOUT ANY WARRANTY. *
*****************************************************************************/
#ifndef DUMUX_TUTORIALPROBLEM_COUPLED_HH
#define DUMUX_TUTORIALPROBLEM_COUPLED_HH
// fluid properties
#include <dumux/material/fluidsystems/h2o_n2_system.hh>
// the numerical model
#include <dumux/boxmodels/2p/2pboxmodel.hh>
// the grid used
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfs.hh>
// assign parameters dependent on space (e.g. soil properties)
#include "tutorialspatialparameters_coupled.hh"
namespace Dumux
{
// forward declaration of the problem class
template <class TypeTag>
class TutorialProblemCoupled;
namespace Properties
{
// create a new type tag for the problem
NEW_TYPE_TAG(TutorialProblemCoupled, INHERITS_FROM(BoxTwoP)); /*@\label{tutorial-coupled:create-type-tag}@*/
// Set the "Problem" property
SET_PROP(TutorialProblemCoupled, Problem) /*@\label{tutorial-coupled:set-problem}@*/
{
typedef Dumux::TutorialProblemCoupled<TTAG(TutorialProblemCoupled)> type;
};
// Set the grid
SET_PROP(TutorialProblemCoupled, Grid) /*@\label{tutorial-coupled:set-grid}@*/
{
typedef Dune::SGrid<2,2> type;
static type *create() /*@\label{tutorial-coupled:create-grid-method}@*/
{
typedef typename type::ctype ctype;
Dune::FieldVector<int, 2> cellRes;
Dune::FieldVector<ctype, 2> lowerLeft(0.0);
Dune::FieldVector<ctype, 2> upperRight;
cellRes[0] = 30;
cellRes[1] = 10;
upperRight[0] = 300;
upperRight[1] = 60;
return new Dune::SGrid<2,2>(cellRes,
lowerLeft,
upperRight);
}
};
// Select fluid system
SET_PROP(TutorialProblemCoupled, FluidSystem) /*@\label{tutorial-coupled:set-fluidsystem}@*/
{
typedef Dumux::H2O_N2_System<TypeTag> type;
};
// Set the spatial parameters
SET_PROP(TutorialProblemCoupled, SpatialParameters) /*@\label{tutorial-coupled:set-spatialparameters}@*/
{
typedef Dumux::TutorialSpatialParametersCoupled<TypeTag> type;
};
// Disable gravity
SET_BOOL_PROP(TutorialProblemCoupled, EnableGravity, false); /*@\label{tutorial-coupled:gravity}@*/
}
// Definition of the actual problem
template <class TypeTag = TTAG(TutorialProblemCoupled) >
class TutorialProblemCoupled : public TwoPBoxProblem<TypeTag, /*@\label{tutorial-coupled:def-problem}@*/
TutorialProblemCoupled<TypeTag> >
{
typedef TutorialProblemCoupled<TypeTag> ThisType;
typedef TwoPBoxProblem<TypeTag, ThisType> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
// Grid and world dimension
enum {
dim = GridView::dimension,
dimWorld = GridView::dimensionworld,
};
typedef typename GridView::Grid::ctype CoordScalar;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices;
typedef typename GridView::template Codim<0>::Entity Element;
typedef typename GridView::template Codim<dim>::Entity Vertex;
typedef typename GridView::Intersection Intersection;
typedef Dune::FieldVector<CoordScalar, dim> LocalPosition;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef typename GET_PROP(TypeTag, PTAG(SolutionTypes)) SolutionTypes;
typedef typename SolutionTypes::PrimaryVarVector PrimaryVarVector;
typedef typename SolutionTypes::BoundaryTypeVector BoundaryTypeVector;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FVElementGeometry)) FVElementGeometry;
public:
TutorialProblemCoupled(const GridView &gridView)
: ParentType(gridView)
{}
// Return the temperature within the domain. We use 10 degrees Celsius.
Scalar temperature(const Element &element,
const FVElementGeometry &fvElemGeom,
int scvIdx) const
{ return 283.15; };
// Specifies which kind of boundary condition should be used for
// which equation on a given boundary segment.
void boundaryTypes(BoundaryTypeVector &BCtype,
const Element &element,
const FVElementGeometry &fvElemGeom,
const Intersection &isIt,
int scvIdx,
int boundaryFaceIdx) const
{
const GlobalPosition &pos = element.geometry().corner(scvIdx);
if (pos[0] < eps_) // dirichlet conditions on left boundary
BCtype.setAllDirichlet();
else // neuman for the remaining boundaries
BCtype.setAllNeumann();
}
// Evaluate the boundary conditions for a dirichlet boundary
// segment. For this method, the 'values' parameter stores
// primary variables.
void dirichlet(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
const Intersection &isIt,
int scvIdx,
int boundaryFaceIdx) const
{
values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar
values[Indices::SnIdx] = 0.0; // 0 % oil saturation on left boundary
}
// Evaluate the boundary conditions for a neumann boundary
// segment. For this method, the 'values' parameter stores the
// mass flux in normal direction of each phase. Negative values
// mean influx.
void neumann(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
const Intersection &isIt,
int scvIdx,
int boundaryFaceIdx) const
{
const GlobalPosition &pos =
fvElemGeom.boundaryFace[boundaryFaceIdx].ipGlobal;
Scalar right = this->bboxMax()[0];
if (pos[0] > right - eps_) {
// oil outflux of 0.3 g/(m * s) on the right boundary of
// the domain.
values[Indices::contiWEqIdx] = 0;
values[Indices::contiNEqIdx] = 0.3e-3;
} else {
// no-flow on the remaining neumann-boundaries
values[Indices::contiWEqIdx] = 0;
values[Indices::contiNEqIdx] = 0;
}
}
// Evaluate the initial value for a control volume. For this
// method, the 'values' parameter stores primary variables.
void initial(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
int scvIdx) const
{
values[Indices::pwIdx] = 200.0e3; // 200 kPa = 2 bar
values[Indices::SnIdx] = 1.0;
}
// Evaluate the source term for all phases within a given
// sub-control-volume. For this method, the \a values parameter
// stores the rate mass generated or annihilate per volume
// unit. Positive values mean that mass is created, negative ones
// mean that it vanishes.
void source(PrimaryVarVector &values,
const Element &element,
const FVElementGeometry &fvElemGeom,
int scvIdx) const
{
values[Indices::contiWEqIdx] = 0.0;
values[Indices::contiNEqIdx]= 0.0;
}
private:
static const Scalar eps_ = 3e-6;
};
}
#endif