-
Bernd Flemisch authoredBernd Flemisch authored
main.cc 12.00 KiB
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
*
* \brief Channel flow test for the staggered grid (Navier-)Stokes model
*/
#include <config.h>
#include <ctime>
#include <iostream>
#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/timer.hh>
#include <dune/grid/io/file/dgfparser/dgfexception.hh>
#include <dune/grid/io/file/vtk.hh>
#include <dune/istl/io.hh>
#include "problem.hh"
#include <dumux/common/properties.hh>
#include <dumux/common/parameters.hh>
#include <dumux/common/valgrind.hh>
#include <dumux/common/dumuxmessage.hh>
#include <dumux/common/defaultusagemessage.hh>
#include <dumux/linear/seqsolverbackend.hh>
#include <dumux/nonlinear/newtonsolver.hh>
#include <dumux/assembly/staggeredfvassembler.hh>
#include <dumux/assembly/diffmethod.hh>
#include <dumux/discretization/method.hh>
#include <dumux/io/staggeredvtkoutputmodule.hh>
#include <dumux/io/grid/gridmanager.hh>
#include <dumux/io/loadsolution.hh>
#include <dumux/freeflow/navierstokes/staggered/fluxoversurface.hh>
/*!
* \brief Provides an interface for customizing error messages associated with
* reading in parameters.
*
* \param progName The name of the program, that was tried to be started.
* \param errorMsg The error message that was issued by the start function.
* Comprises the thing that went wrong and a general help message.
*/
void usage(const char *progName, const std::string &errorMsg)
{
if (errorMsg.size() > 0) {
std::string errorMessageOut = "\nUsage: ";
errorMessageOut += progName;
errorMessageOut += " [options]\n";
errorMessageOut += errorMsg;
errorMessageOut += "\n\nThe list of mandatory arguments for this program is:\n"
"\t-TimeManager.TEnd End of the simulation [s] \n"
"\t-TimeManager.DtInitial Initial timestep size [s] \n"
"\t-Grid.File Name of the file containing the grid \n"
"\t definition in DGF format\n"
"\t-SpatialParams.LensLowerLeftX x-coordinate of the lower left corner of the lens [m] \n"
"\t-SpatialParams.LensLowerLeftY y-coordinate of the lower left corner of the lens [m] \n"
"\t-SpatialParams.LensUpperRightX x-coordinate of the upper right corner of the lens [m] \n"
"\t-SpatialParams.LensUpperRightY y-coordinate of the upper right corner of the lens [m] \n"
"\t-SpatialParams.Permeability Permeability of the domain [m^2] \n"
"\t-SpatialParams.PermeabilityLens Permeability of the lens [m^2] \n";
std::cout << errorMessageOut
<< "\n";
}
}
int main(int argc, char** argv) try
{
using namespace Dumux;
// define the type tag for this problem
using TypeTag = Properties::TTag::ChannelTest;
// initialize MPI, finalize is done automatically on exit
const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);
// print dumux start message
if (mpiHelper.rank() == 0)
DumuxMessage::print(/*firstCall=*/true);
// parse command line arguments and input file
Parameters::init(argc, argv, usage);
// try to create a grid (from the given grid file or the input file)
GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
gridManager.init();
////////////////////////////////////////////////////////////
// run instationary non-linear problem on this grid
////////////////////////////////////////////////////////////
// we compute on the leaf grid view
const auto& leafGridView = gridManager.grid().leafGridView();
// create the finite volume grid geometry
using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
auto fvGridGeometry = std::make_shared<FVGridGeometry>(leafGridView);
fvGridGeometry->update();
// the problem (initial and boundary conditions)
using Problem = GetPropType<TypeTag, Properties::Problem>;
auto problem = std::make_shared<Problem>(fvGridGeometry);
// get some time loop parameters
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
auto dt = getParam<Scalar>("TimeLoop.DtInitial");
// check if we are about to restart a previously interrupted simulation
Scalar restartTime = getParam<Scalar>("Restart.Time", 0);
// the solution vector
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
const auto numDofsCellCenter = leafGridView.size(0);
const auto numDofsFace = leafGridView.size(1);
SolutionVector x;
x[FVGridGeometry::cellCenterIdx()].resize(numDofsCellCenter);
x[FVGridGeometry::faceIdx()].resize(numDofsFace);
problem->applyInitialSolution(x);
auto xOld = x;
// instantiate time loop
auto timeLoop = std::make_shared<CheckPointTimeLoop<Scalar>>(restartTime, dt, tEnd);
timeLoop->setMaxTimeStepSize(maxDt);
problem->setTimeLoop(timeLoop);
// the grid variables
using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
gridVariables->init(x, xOld);
// initialize the vtk output module
using IOFields = GetPropType<TypeTag, Properties::IOFields>;
StaggeredVtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
vtkWriter.write(restartTime);
// the assembler with time loop for instationary problem
using Assembler = StaggeredFVAssembler<TypeTag, DiffMethod::numeric>;
auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop);
// the linear solver
using LinearSolver = Dumux::UMFPackBackend;
auto linearSolver = std::make_shared<LinearSolver>();
// the non-linear solver
using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
NewtonSolver nonLinearSolver(assembler, linearSolver);
// set up two surfaces over which fluxes are calculated
FluxOverSurface<TypeTag> flux(*problem, *gridVariables, x);
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Element = typename GridView::template Codim<0>::Entity;
using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
const Scalar xMin = fvGridGeometry->bBoxMin()[0];
const Scalar xMax = fvGridGeometry->bBoxMax()[0];
const Scalar yMin = fvGridGeometry->bBoxMin()[1];
const Scalar yMax = fvGridGeometry->bBoxMax()[1];
// The first surface shall be placed at the middle of the channel.
// If we have an odd number of cells in x-direction, there would not be any cell faces
// at the position of the surface (which is required for the flux calculation).
// In this case, we add half a cell-width to the x-position in order to make sure that
// the cell faces lie on the surface. This assumes a regular cartesian grid.
const Scalar planePosMiddleX = xMin + 0.5*(xMax - xMin);
const int numCellsX = getParam<std::vector<int>>("Grid.Cells")[0];
const Scalar offsetX = (numCellsX % 2 == 0) ? 0.0 : 0.5*((xMax - xMin) / numCellsX);
const auto p0middle = GlobalPosition{planePosMiddleX + offsetX, yMin};
const auto p1middle = GlobalPosition{planePosMiddleX + offsetX, yMax};
flux.addSurface("middle", p0middle, p1middle);
// The second surface is placed at the outlet of the channel.
const auto p0outlet = GlobalPosition{xMax, yMin};
const auto p1outlet = GlobalPosition{xMax, yMax};
flux.addSurface("outlet", p0outlet, p1outlet);
// time loop
timeLoop->start(); do
{
// set previous solution for storage evaluations
assembler->setPreviousSolution(xOld);
// solve the non-linear system with time step control
nonLinearSolver.solve(x, *timeLoop);
// make the new solution the old solution
xOld = x;
gridVariables->advanceTimeStep();
// advance to the time loop to the next step
timeLoop->advanceTimeStep();
// write vtk output
vtkWriter.write(timeLoop->time());
// calculate and print mass fluxes over the planes
flux.calculateMassOrMoleFluxes();
if(GetPropType<TypeTag, Properties::ModelTraits>::enableEnergyBalance())
{
std::cout << "mass / energy flux at middle is: " << flux.netFlux("middle") << std::endl;
std::cout << "mass / energy flux at outlet is: " << flux.netFlux("outlet") << std::endl;
}
else
{
std::cout << "mass flux at middle is: " << flux.netFlux("middle") << std::endl;
std::cout << "mass flux at outlet is: " << flux.netFlux("outlet") << std::endl;
}
// calculate and print volume fluxes over the planes
flux.calculateVolumeFluxes();
std::cout << "volume flux at middle is: " << flux.netFlux("middle")[0] << std::endl;
std::cout << "volume flux at outlet is: " << flux.netFlux("outlet")[0] << std::endl;
// report statistics of this time step
timeLoop->reportTimeStep();
// set new dt as suggested by newton solver
timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));
} while (!timeLoop->finished());
timeLoop->finalize(leafGridView.comm());
////////////////////////////////////////////////////////////
// finalize, print dumux message to say goodbye
////////////////////////////////////////////////////////////
// print dumux end message
if (mpiHelper.rank() == 0)
{
Parameters::print();
DumuxMessage::print(/*firstCall=*/false);
}
return 0;
} // end main
catch (Dumux::ParameterException &e)
{
std::cerr << std::endl << e << " ---> Abort!" << std::endl;
return 1;
}
catch (Dune::DGFException & e)
{
std::cerr << "DGF exception thrown (" << e <<
"). Most likely, the DGF file name is wrong "
"or the DGF file is corrupted, "
"e.g. missing hash at end of file or wrong number (dimensions) of entries."
<< " ---> Abort!" << std::endl;
return 2;
}
catch (Dune::Exception &e)
{
std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
return 3;
}
catch (...)
{
std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
return 4;
}