-
Bernd Flemisch authoredBernd Flemisch authored
main.cc 9.40 KiB
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
// ## The main file
// This is the main file for the shallow water example. Here we can see the programme sequence and how the system is solved using newton's method.
// ### Includes
#include <config.h>
// Standard header file for C++, to get time and date information.
#include <ctime>
// Standard header file for C++, for in- and output.
#include <iostream>
// Dumux is based on DUNE, the Distributed and Unified Numerics Environment, which provides several grid managers and linear solvers. So we need some includes from that.
#include <dune/common/parallel/mpihelper.hh>
#include <dune/common/timer.hh>
#include <dune/grid/io/file/dgfparser/dgfexception.hh>
#include <dune/grid/io/file/vtk.hh>
// We need the following class to simplify the writing of dumux simulation data to VTK format.
#include <dumux/io/vtkoutputmodule.hh>
// In Dumux a property system is used to specify the model. For this, different properties are defined containing type definitions, values and methods. All properties are declared in the file properties.hh.
#include <dumux/common/properties.hh>
// The following file contains the parameter class, which manages the definition of input parameters by a default value, the inputfile or the command line.
#include <dumux/common/parameters.hh>
// The file dumuxmessage.hh contains the class defining the start and end message of the simulation.
#include <dumux/common/dumuxmessage.hh>
#include <dumux/common/defaultusagemessage.hh>
// The gridmanager constructs a grid from the information in the input or grid file. There is a specification for the different supported grid managers.
#include <dumux/io/grid/gridmanager.hh>
// We include the linear solver to be used to solve the linear system
#include <dumux/linear/amgbackend.hh>
// We include the nonlinear newtons method
#include <dumux/nonlinear/newtonsolver.hh>
// Further we include assembler, which assembles the linear systems for finite volume schemes (box-scheme, tpfa-approximation, mpfa-approximation)
#include <dumux/assembly/fvassembler.hh>
// We include the problem file which defines initial and boundary conditions to describe our example problem
#include "problem.hh"
// ### Beginning of the main function
int main(int argc, char** argv) try
{
using namespace Dumux;
// We define the type tag for this problem
using TypeTag = Properties::TTag::RoughChannel;
// We initialize MPI, finalize is done automatically on exit
const auto& mpiHelper = Dune::MPIHelper::instance(argc, argv);
// We print dumux start message
if (mpiHelper.rank() == 0)
DumuxMessage::print(/*firstCall=*/true);
// We parse command line arguments and input file
Parameters::init(argc, argv);
// ### Create the grid
// A gridmanager tries to create the grid either from a grid file or the input file.
GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
gridManager.init();
// We compute on the leaf grid view
const auto& leafGridView = gridManager.grid().leafGridView();
// ### Setup and solving of the problem
// #### Setup
// We create and initialize the finite volume grid geometry, the problem, the linear system, including the jacobian matrix, the residual and the solution vector and the gridvariables.
// We need the finite volume geometry to build up the subcontrolvolumes (scv) and subcontrolvolume faces (scvf) for each element of the grid partition.
using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
gridGeometry->update();
// In the problem, we define the boundary and initial conditions.
using Problem = GetPropType<TypeTag, Properties::Problem>;
auto problem = std::make_shared<Problem>(gridGeometry);
// We initialize the solution vector
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
SolutionVector x(gridGeometry->numDofs());
problem->applyInitialSolution(x);
auto xOld = x;
// And then use the solutionvector to intialize the gridVariables.
using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
gridVariables->init(x);
// We get some time loop parameters from the input file.
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
auto dt = getParam<Scalar>("TimeLoop.DtInitial");
// We intialize the vtk output module. Each model has a predefined model specific output with relevant parameters for that model.
using IOFields = GetPropType<TypeTag, Properties::IOFields>;
VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables,x, problem->name());
// We add the analytical solution ("exactWaterDepth" and "exactVelocityX") to the predefined specific output.
vtkWriter.addField(problem->getExactWaterDepth(), "exactWaterDepth");
vtkWriter.addField(problem->getExactVelocityX(), "exactVelocityX");
// We calculate the analytic solution.
problem->analyticalSolution();
IOFields::initOutputModule(vtkWriter);
vtkWriter.write(0.0);
// We instantiate time loop.
auto timeLoop = std::make_shared<CheckPointTimeLoop<Scalar>>(0, dt, tEnd);
timeLoop->setMaxTimeStepSize(maxDt);
//we set the assembler with the time loop because we have an instationary problem.
using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables, timeLoop);
// We set the linear solver.
using LinearSolver = Dumux::AMGBackend<TypeTag>;
auto linearSolver = std::make_shared<LinearSolver>(leafGridView, gridGeometry->dofMapper());
// Additionaly, we set the non-linear solver.
using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
NewtonSolver nonLinearSolver(assembler, linearSolver);
// We set some check point at the end of the time loop. The check point is used to trigger the vtk output.
timeLoop->setCheckPoint(tEnd);
// We start the time loop.
timeLoop->start(); do
{
// We start to calculate the new solution of that time step. First we define the old solution as the solution of the previous time step for storage evaluations.
assembler->setPreviousSolution(xOld);
// We solve the non-linear system with time step control.
nonLinearSolver.solve(x,*timeLoop);
// We make the new solution the old solution.
xOld = x;
gridVariables->advanceTimeStep();
// We advance to the time loop to the next step.
timeLoop->advanceTimeStep();
// We write vtk output, if we reached the check point (end of time loop)
if (timeLoop->isCheckPoint())
vtkWriter.write(timeLoop->time());
// We report statistics of this time step.
timeLoop->reportTimeStep();
// We set new dt as suggested by newton controller for the next time step.
timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));
} while (!timeLoop->finished());
timeLoop->finalize(leafGridView.comm());
// ### Final Output
// We print dumux end message.
if (mpiHelper.rank() == 0)
{
Parameters::print();
DumuxMessage::print(/*firstCall=*/false);
}
return 0;
} // end main
catch (const Dumux::ParameterException &e)
{
std::cerr << std::endl << e << " ---> Abort!" << std::endl;
return 1;
}
catch (const Dune::DGFException & e)
{
std::cerr << "DGF exception thrown (" << e <<
"). Most likely, the DGF file name is wrong "
"or the DGF file is corrupted, "
"e.g. missing hash at end of file or wrong number (dimensions) of entries."
<< " ---> Abort!" << std::endl;
return 2;
}
catch (const Dune::Exception &e)
{
std::cerr << "Dune reported error: " << e << " ---> Abort!" << std::endl;
return 3;
}
catch (...)
{
std::cerr << "Unknown exception thrown! ---> Abort!" << std::endl;
return 4;
}