Skip to content
Snippets Groups Projects
Commit 1b96e167 authored by Martin Schneider's avatar Martin Schneider Committed by Kilian Weishaupt
Browse files

[flux][forchheimer] forchheimer velocity class

move discretization-independent code from cctpfa forchheimer law to
seperate class
parent 15ea79b6
No related branches found
No related tags found
1 merge request!1822Feature/box forchheimer
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
* \ingroup Flux
* \brief Forchheimer's law
* This file contains the calculation of the Forchheimer velocity
* for a given Darcy velocity
*/
#ifndef DUMUX_FLUX_FORCHHEIMER_VELOCITY_HH
#define DUMUX_FLUX_FORCHHEIMER_VELOCITY_HH
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dumux/common/math.hh>
#include <dumux/common/parameters.hh>
#include <dumux/common/properties.hh>
#include <dumux/common/typetraits/typetraits.hh>
namespace Dumux {
/*!
* \ingroup Flux
* \brief Forchheimer's law
* This file contains the calculation of the Forchheimer velocity
* for a given Darcy velocity
*/
template<class Scalar, class GridGeometry, class FluxVariables>
class ForchheimerVelocity
{
using FVElementGeometry = typename GridGeometry::LocalView;
using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace;
using GridView = typename GridGeometry::GridView;
using Element = typename GridView::template Codim<0>::Entity;
static constexpr int dim = GridView::dimension;
static constexpr int dimWorld = GridView::dimensionworld;
using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
public:
using UpwindScheme = typename FluxVariables::UpwindScheme;
using DimWorldVector = Dune::FieldVector<Scalar, dimWorld>;
using DimWorldMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
/*! \brief Compute the Forchheimer velocity of a phase at
* the given sub-control volume face using the Forchheimer equation.
*
*
* see e.g. Nield & Bejan: Convection in Porous Media \cite nield2006
*
* The relative passability \f$ \eta_r\f$ is the "Forchheimer-equivalent" to the relative
* permeability \f$ k_r\f$.
* We use the same function as for \f$ k_r \f$ (VG, BC, linear) other authors use a simple
* power law e.g.: \f$\eta_{rw} = S_w^3\f$
*
* Some rearrangements have been made to the original Forchheimer relation:
*
* \f[ \mathbf{v_\alpha} + c_F \sqrt{\mathbf{K}} \frac{\rho_\alpha}{\mu_\alpha }
* |\mathbf{v_\alpha}| \mathbf{v_\alpha}
* + \frac{k_{r \alpha}}{\mu_\alpha} \mathbf{K} \nabla \left(p_\alpha
* + \rho_\alpha g z \right)= 0
* \f]
*
* This already includes the assumption \f$ k_r(S_w) = \eta_r(S_w)\f$:
* - \f$\eta_{rw} = S_w^x\f$ looks very similar to e.g. Van Genuchten relative permeabilities
* - Fichot, et al. (2006), Nuclear Engineering and Design, state that several authors claim
* that \f$ k_r(S_w), \eta_r(S_w)\f$ can be chosen equal
* - It leads to the equation not degenerating for the case of \f$S_w=1\f$, because I do not
* need to multiply with two different functions, and therefore there are terms not being
* zero.
* - If this assumption is not to be made: Some regularization needs to be introduced ensuring
* that not all terms become zero for \f$S_w=1\f$.
*
* This non-linear equations is solved for \f$\mathbf{v_\alpha}\f$ using Newton's method
* and an analytical derivative w.r.t. \f$\mathbf{v_\alpha}\f$.
*
* The gradient of the Forchheimer relations looks as follows (mind that \f$\sqrt{\mathbf{K}}\f$
* is a tensor):
*
* \f[ f\left(\mathbf{v_\alpha}\right) =
* \left(
* \begin{array}{ccc}
* 1 & 0 &0 \\
* 0 & 1 &0 \\
* 0 & 0 &1 \\
* \end{array}
* \right)
* +
* c_F \frac{\rho_\alpha}{\mu_\alpha} |\mathbf{v}_\alpha| \sqrt{\mathbf{K}}
* +
* c_F \frac{\rho_\alpha}{\mu_\alpha}\frac{1}{|\mathbf{v}_\alpha|} \sqrt{\mathbf{K}}
* \left(
* \begin{array}{ccc}
* v_x^2 & v_xv_y & v_xv_z \\
* v_yv_x & v_{y}^2 & v_yv_z \\
* v_zv_x & v_zv_y &v_{z}^2 \\
* \end{array}
* \right)
* \f]
*
* \note We restrict the use of Forchheimer's law to diagonal permeability tensors so far. This might be changed to
* general tensors using eigenvalue decomposition to get \f$\sqrt{\mathbf{K}}\f$
*/
template<class ElementVolumeVariables>
static DimWorldVector velocity(const FVElementGeometry& fvGeometry,
const ElementVolumeVariables& elemVolVars,
const SubControlVolumeFace& scvf,
const int phaseIdx,
const DimWorldMatrix sqrtK,
const DimWorldVector darcyVelocity)
{
const auto& problem = elemVolVars.gridVolVars().problem();
// Obtain the Forchheimer coefficient from the spatial parameters
const Scalar forchCoeff = problem.spatialParams().forchCoeff(scvf);
// Initial guess of velocity: Darcy relation
DimWorldVector velocity = darcyVelocity;
DimWorldVector deltaV(0.0); // the change in velocity between Newton iterations
DimWorldVector residual(10e10); // the residual (function value that is to be minimized)
DimWorldMatrix gradF(0.0); // slope of equation that is to be solved
// Search by means of the Newton method for a root of Forchheimer equation
static const Scalar epsilon = getParamFromGroup<Scalar>(problem.paramGroup(), "Forchheimer.NewtonTolerance", 1e-12);
static const std::size_t maxNumIter = getParamFromGroup<std::size_t>(problem.paramGroup(), "Forchheimer.MaxIterations", 30);
for (int k = 0; residual.two_norm() > epsilon ; ++k)
{
if (k >= maxNumIter)
DUNE_THROW(NumericalProblem, "could not determine forchheimer velocity within "
<< k << " iterations");
// calculate current value of Forchheimer equation
forchheimerResidual_(residual,
forchCoeff,
sqrtK,
darcyVelocity,
velocity,
elemVolVars,
scvf,
phaseIdx);
// newton's method: slope (gradF) and current value (residual) of function is known,
forchheimerDerivative_(gradF,
forchCoeff,
sqrtK,
velocity,
elemVolVars,
scvf,
phaseIdx);
// solve for change in velocity ("x-Axis intercept")
gradF.solve(deltaV, residual);
velocity -= deltaV;
}
// The fluxvariables expect a value on which an upwinding of the mobility is performed.
// We therefore divide by the mobility here.
auto upwindTerm = [phaseIdx](const auto& volVars){ return volVars.mobility(phaseIdx); };
const Scalar forchheimerUpwindMobility = UpwindScheme::multiplier(elemVolVars, scvf, upwindTerm, velocity * scvf.unitOuterNormal(), phaseIdx);
// Do not divide by zero. If the mobility is zero, the resulting flux with upwinding will be zero anyway.
if (forchheimerUpwindMobility > 0.0)
velocity /= forchheimerUpwindMobility;
return velocity;
}
/*! \brief Returns the harmonic mean of \f$\sqrt{K_0}\f$ and \f$\sqrt{K_1}\f$.
*
* This is a specialization for scalar-valued permeabilities which returns a tensor with identical diagonal entries.
*/
template<class Problem, class ElementVolumeVariables,
bool scalarPerm = std::is_same<typename Problem::SpatialParams::PermeabilityType, Scalar>::value,
std::enable_if_t<scalarPerm, int> = 0>
static DimWorldMatrix calculateHarmonicMeanSqrtPermeability(const Problem& problem,
const ElementVolumeVariables& elemVolVars,
const SubControlVolumeFace& scvf)
{
using std::sqrt;
Scalar harmonicMeanSqrtK(0.0);
const auto insideScvIdx = scvf.insideScvIdx();
const auto& insideVolVars = elemVolVars[insideScvIdx];
const Scalar Ki = getPermeability_(problem, insideVolVars, scvf.ipGlobal());
const Scalar sqrtKi = sqrt(Ki);
if (!scvf.boundary())
{
const auto outsideScvIdx = scvf.outsideScvIdx();
const auto& outsideVolVars = elemVolVars[outsideScvIdx];
const Scalar Kj = getPermeability_(problem, outsideVolVars, scvf.ipGlobal());
const Scalar sqrtKj = sqrt(Kj);
harmonicMeanSqrtK = problem.spatialParams().harmonicMean(sqrtKi, sqrtKj, scvf.unitOuterNormal());
}
else
harmonicMeanSqrtK = sqrtKi;
// Convert to tensor
DimWorldMatrix result(0.0);
for (int i = 0; i < dimWorld; ++i)
result[i][i] = harmonicMeanSqrtK;
return result;
}
/*! \brief Returns the harmonic mean of \f$\sqrt{\mathbf{K_0}}\f$ and \f$\sqrt{\mathbf{K_1}}\f$.
*
* This is a specialization for tensor-valued permeabilities.
*/
template<class Problem, class ElementVolumeVariables,
bool scalarPerm = std::is_same<typename Problem::SpatialParams::PermeabilityType, Scalar>::value,
std::enable_if_t<!scalarPerm, int> = 0>
static DimWorldMatrix calculateHarmonicMeanSqrtPermeability(const Problem& problem,
const ElementVolumeVariables& elemVolVars,
const SubControlVolumeFace& scvf)
{
using std::sqrt;
DimWorldMatrix sqrtKi(0.0);
DimWorldMatrix sqrtKj(0.0);
DimWorldMatrix harmonicMeanSqrtK(0.0);
const auto insideScvIdx = scvf.insideScvIdx();
const auto& insideVolVars = elemVolVars[insideScvIdx];
const auto& Ki = getPermeability_(problem, insideVolVars, scvf.ipGlobal());
// Make sure the permeability matrix does not have off-diagonal entries
// TODO implement method using eigenvalues and eigenvectors for general tensors
if (!isDiagonal_(Ki))
DUNE_THROW(Dune::NotImplemented, "Only diagonal permeability tensors are supported.");
for (int i = 0; i < dim; ++i)
sqrtKi[i][i] = sqrt(Ki[i][i]);
if (!scvf.boundary())
{
const auto outsideScvIdx = scvf.outsideScvIdx();
const auto& outsideVolVars = elemVolVars[outsideScvIdx];
const auto& Kj = getPermeability_(problem, outsideVolVars, scvf.ipGlobal());
// Make sure the permeability matrix does not have off-diagonal entries
if (!isDiagonal_(Kj))
DUNE_THROW(Dune::NotImplemented, "Only diagonal permeability tensors are supported.");
for (int i = 0; i < dim; ++i)
sqrtKj[i][i] = sqrt(Kj[i][i]);
harmonicMeanSqrtK = problem.spatialParams().harmonicMean(sqrtKi, sqrtKj, scvf.unitOuterNormal());
}
else
harmonicMeanSqrtK = sqrtKi;
return harmonicMeanSqrtK;
}
private:
//! calculate the residual of the Forchheimer equation
template<class ElementVolumeVariables>
static void forchheimerResidual_(DimWorldVector& residual,
const Scalar forchCoeff,
const DimWorldMatrix& sqrtK,
const DimWorldVector& darcyVelocity,
const DimWorldVector& oldVelocity,
const ElementVolumeVariables& elemVolVars,
const SubControlVolumeFace& scvf,
const int phaseIdx)
{
residual = oldVelocity;
// residual += k_r/mu K grad p
residual -= darcyVelocity;
// residual += c_F rho / mu abs(v) sqrt(K) v
auto upwindTerm = [phaseIdx](const auto& volVars){ return volVars.density(phaseIdx) / volVars.viscosity(phaseIdx); };
const Scalar rhoOverMu = UpwindScheme::multiplier(elemVolVars, scvf, upwindTerm, oldVelocity * scvf.unitOuterNormal(), phaseIdx);
sqrtK.usmv(forchCoeff * rhoOverMu * oldVelocity.two_norm(), oldVelocity, residual);
}
//! The analytical derivative of the the Forcheimer equation's residual
template<class ElementVolumeVariables>
static void forchheimerDerivative_(DimWorldMatrix& derivative,
const Scalar forchCoeff,
const DimWorldMatrix& sqrtK,
const DimWorldVector& velocity,
const ElementVolumeVariables& elemVolVars,
const SubControlVolumeFace& scvf,
const int phaseIdx)
{
// Initialize because for low velocities, we add and do not set the entries.
derivative = 0.0;
auto upwindTerm = [phaseIdx](const auto& volVars){ return volVars.density(phaseIdx) / volVars.viscosity(phaseIdx); };
const Scalar absV = velocity.two_norm();
// This part of the derivative is only calculated if the velocity is sufficiently small:
// do not divide by zero!
// This should not be very bad because the derivative is only intended to give an
// approximation of the gradient of the
// function that goes into the Newton scheme.
// This is important in the case of a one-phase region in two-phase flow. The non-existing
// phase has a velocity of zero (kr=0).
// f = sqrtK * vTimesV (this is a matrix)
// f *= forchCoeff density / |velocity| / viscosity (multiply all entries with scalars)
const Scalar rhoOverMu = UpwindScheme::multiplier(elemVolVars, scvf, upwindTerm, velocity * scvf.unitOuterNormal(), phaseIdx);
if (absV > 1e-20)
{
for (int i = 0; i < dim; i++)
{
for (int k = 0; k <= i; k++)
{
derivative[i][k] = sqrtK[i][i] * velocity[i] * velocity[k] * forchCoeff
/ absV * rhoOverMu;
if (k < i)
derivative[k][i] = derivative[i][k];
}
}
}
// add on the main diagonal:
// 1 + sqrtK_i forchCoeff density |v| / viscosity
for (int i = 0; i < dim; i++)
derivative[i][i] += (1.0 + (sqrtK[i][i]*forchCoeff * absV * rhoOverMu));
}
/*!
* \brief Check whether all off-diagonal entries of a tensor are zero.
*
* \param K the tensor that is to be checked.
*
* \return True if all off-diagonals are zero.
*
*/
static bool isDiagonal_(const DimWorldMatrix & K)
{
using std::abs;
for (int i = 0; i < dim; i++)
for (int k = 0; k < dim; k++)
if ((i != k) && (abs(K[i][k]) >= 1e-25))
return false;
return true;
}
template<class Problem, class VolumeVariables>
static decltype(auto) getPermeability_(const Problem& problem,
const VolumeVariables& volVars,
const GlobalPosition& scvfIpGlobal)
{
if constexpr (Problem::SpatialParams::evaluatePermeabilityAtScvfIP())
return problem.spatialParams().permeabilityAtPos(scvfIpGlobal);
else
return volVars.permeability();
}
};
} // end namespace Dumux
#endif
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment