Skip to content
Snippets Groups Projects
Commit 615eb67f authored by Christoph Grüninger's avatar Christoph Grüninger
Browse files

[handbook]

Fix some bad boxes.


git-svn-id: svn://svn.iws.uni-stuttgart.de/DUMUX/dumux/trunk@9012 2fb0f335-1f38-0410-981e-8018bf24f1b0
parent 549abf95
No related branches found
No related tags found
No related merge requests found
...@@ -4,15 +4,17 @@ ...@@ -4,15 +4,17 @@
% file instead!! % % file instead!! %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\-This model solves equations of the form \[ \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) + \textbf{div}\, \boldsymbol{v}_{total} = q. \] \-The definition of the total velocity $\boldsymbol{v}_{total}$ depends on the choice of the primary pressure variable. \-Further, fluids can be assumed to be compressible or incompressible (\-Property\-: {\ttfamily \-Enable\-Compressibility}). \-In the incompressible case a wetting $(w) $ phase pressure as primary variable leads to This model solves equations of the form \[ \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) + \textbf{div}\, \boldsymbol{v}_{total} = q. \] The definition of the total velocity $\boldsymbol{v}_{total}$ depends on the choice of the primary pressure variable. Further, fluids can be assumed to be compressible or incompressible which is toggled by the Property {\ttfamily Enable\-Compressibility}). In the incompressible case a wetting $(w) $ phase pressure as primary variable leads to
\[ - \textbf{div}\, \left[\lambda \boldsymbol K \left(\textbf{grad}\, p_w + f_n \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, \] \[ - \textbf{div}\, \left[\lambda \boldsymbol K \left(\textbf{grad}\, p_w + f_n \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, \]
a non-\/wetting ( $ n $) phase pressure yields \[ - \textbf{div}\, \left[\lambda \boldsymbol K \left(\textbf{grad}\, p_n - f_w \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, \] and a global pressure leads to \[ - \textbf{div}\, \left[\lambda \boldsymbol K \left(\textbf{grad}\, p_{global} + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q. \] \-Here, $ p_\alpha $ is a phase pressure, $ p_ {global} $ the global pressure of a classical fractional flow formulation (see e.\-g. \-P. \-Binning and \-M. \-A. \-Celia, ''\-Practical implementation of the fractional flow approach to multi-\/phase flow simulation'', \-Advances in water resources, vol. 22, no. 5, pp. 461-\/478, 1999.), $ p_c = p_n - p_w $ is the capillary pressure, $ \boldsymbol K $ the absolute permeability, $ \lambda = \lambda_w + \lambda_n $ the total mobility depending on the saturation ( $ \lambda_\alpha = k_{r_\alpha} / \mu_\alpha $), $ f_\alpha = \lambda_\alpha / \lambda $ the fractional flow function of a phase, $ \rho_\alpha $ a phase density, $ g $ the gravity constant and $ q $ the source term. a non-\/wetting ( $ n $) phase pressure yields \[ - \textbf{div}\, \left[\lambda \boldsymbol K \left(\textbf{grad}\, p_n - f_w \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, \] and a global pressure leads to \[ - \textbf{div}\, \left[\lambda \boldsymbol K \left(\textbf{grad}\, p_{global} + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q. \] \-Here, $ p_\alpha $ is a phase pressure, $ p_ {global} $ the global pressure of a classical fractional flow formulation (see e.\-g. \-P. \-Binning and \-M. \-A. \-Celia, ''\-Practical implementation of the fractional flow approach to multi-\/phase flow simulation'', \-Advances in water resources, vol. 22, no. 5, pp. 461-\/478, 1999.), $ p_c = p_n - p_w $ is the capillary pressure, $ \boldsymbol K $ the absolute permeability, $ \lambda = \lambda_w + \lambda_n $ the total mobility depending on the saturation ( $ \lambda_\alpha = k_{r_\alpha} / \mu_\alpha $), $ f_\alpha = \lambda_\alpha / \lambda $ the
fractional flow function of a phase, $ \rho_\alpha $ a phase density, $ g $ the gravity constant and $ q $ the source term.
\-For all cases, $ p = p_D $ on $ \Gamma_{Dirichlet} $, and $ \boldsymbol v_{total} \cdot \boldsymbol n = q_N $ on $ \Gamma_{Neumann} $. \-For all cases, $ p = p_D $ on $ \Gamma_{Dirichlet} $, and $ \boldsymbol v_{total} \cdot \boldsymbol n = q_N $ on $ \Gamma_{Neumann} $.
\-The slightly compressible case is only implemented for phase pressures! \-In this case for a wetting $(w) $ phase pressure as primary variable the equations are formulated as \[ \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) - \textbf{div}\, \left[\lambda \boldsymbol{K} \left(\textbf{grad}\, p_w + f_n \, \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, \] and for a non-\/wetting ( $ n $) phase pressure as \[ \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) - \textbf{div}\, \left[\lambda \boldsymbol{K} \left(\textbf{grad}\, p_n - f_w \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, \] \-In this slightly compressible case the following definitions are valid\-: $ \lambda = \rho_w \lambda_w + \rho_n \lambda_n $, $ f_\alpha = (\rho_\alpha \lambda_\alpha) / \lambda $ \-This model assumes that temporal changes in density are very small and thus terms of temporal derivatives are negligible in the pressure equation. \-Depending on the formulation the terms including time derivatives of saturations are simplified by inserting $ S_w + S_n = 1 $. \-The slightly compressible case is only implemented for phase pressures! \-In this case for a wetting $(w) $ phase pressure as primary variable the equations are formulated as \[ \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) - \textbf{div}\, \left[\lambda \boldsymbol{K} \left(\textbf{grad}\, p_w + f_n \, \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, \] and for a non-\/wetting ( $ n $) phase pressure as \[ \phi \left( \rho_w \frac{\partial S_w}{\partial t} + \rho_n \frac{\partial S_n}{\partial t}\right) - \textbf{div}\, \left[\lambda \boldsymbol{K} \left(\textbf{grad}\, p_n - f_w \textbf{grad}\, p_c + \sum f_\alpha \rho_\alpha \, g \, \textbf{grad}\, z\right)\right] = q, \] \-In this slightly compressible case the following definitions are valid\-: $ \lambda = \rho_w \lambda_w + \rho_n \lambda_n $, $ f_\alpha = (\rho_\alpha \lambda_\alpha) / \lambda $ \-This model assumes that temporal changes in density are
very small and thus terms of temporal derivatives are negligible in the pressure equation. \-Depending on the formulation the terms including time derivatives of saturations are simplified by inserting $ S_w + S_n = 1 $.
\-In the \-I\-M\-P\-E\-S models the default setting is\-: \-In the \-I\-M\-P\-E\-S models the default setting is\-:
......
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
% file instead!! % % file instead!! %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\-This model implements three-\/phase three-\/component flow of three fluid phases $\alpha \in \{ water, gas, NAPL \}$ each composed of up to three components $\kappa \in \{ water, air, contaminant \}$. \-The standard multiphase \-Darcy approach is used as the equation for the conservation of momentum\-: \[ v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mbox{\bf K} \left(\text{grad}\, p_\alpha - \varrho_{\alpha} \mbox{\bf g} \right) \] This model implements three-phase three-component flow of three fluid phases $\alpha \in \{ \text{water}, \text{gas}, \text{NAPL} \}$ each composed of up to three components $\kappa \in \{ \text{water}, \text{air}, \text{contaminant} \}$. The standard multiphase Darcy approach is used as the equation for the conservation of momentum: \[ v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mbox{\bf K} \left(\text{grad}\, p_\alpha - \varrho_{\alpha} \mbox{\bf g} \right) \]
\-By inserting this into the equations for the conservation of the components, one transport equation for each component is obtained as \begin{eqnarray*} && \phi \frac{\partial (\sum_\alpha \varrho_{\text{mol}, \alpha} x_\alpha^\kappa S_\alpha )}{\partial t} - \sum\limits_\alpha \text{div} \left\{ \frac{k_{r\alpha}}{\mu_\alpha} \varrho_{\text{mol}, \alpha} x_\alpha^\kappa \mbox{\bf K} (\text{grad}\, p_\alpha - \varrho_{\text{mass}, \alpha} \mbox{\bf g}) \right\} \nonumber \\ \nonumber \\ && - \sum\limits_\alpha \text{div} \left\{ D_{pm}^\kappa \varrho_{\text{mol}, \alpha } \text{grad}\, x_\alpha^\kappa \right\} - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha \end{eqnarray*} \-By inserting this into the equations for the conservation of the components, one transport equation for each component is obtained as \begin{eqnarray*} && \phi \frac{\partial (\sum_\alpha \varrho_{\text{mol}, \alpha} x_\alpha^\kappa S_\alpha )}{\partial t} - \sum\limits_\alpha \text{div} \left\{ \frac{k_{r\alpha}}{\mu_\alpha} \varrho_{\text{mol}, \alpha} x_\alpha^\kappa \mbox{\bf K} (\text{grad}\, p_\alpha - \varrho_{\text{mass}, \alpha} \mbox{\bf g}) \right\} \nonumber \\ \nonumber \\ && - \sum\limits_\alpha \text{div} \left\{ D_{pm}^\kappa \varrho_{\text{mol}, \alpha } \text{grad}\, x_\alpha^\kappa \right\} - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha \end{eqnarray*}
......
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
% file instead!! % % file instead!! %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\-This model implements three-\/phase three-\/component flow of three fluid phases $\alpha \in \{ water, gas, NAPL \}$ each composed of up to three components $\kappa \in \{ water, air, contaminant \}$. \-The standard multiphase \-Darcy approach is used as the equation for the conservation of momentum\-: \[ v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mbox{\bf K} \left(\text{grad}\, p_\alpha - \varrho_{\alpha} \mbox{\bf g} \right) \] This model implements three-phase three-component flow of three fluid phases $\alpha \in \{ \text{water}, \text{gas}, \text{NAPL} \}$ each composed of up to three components $\kappa \in \{ \text{water}, \text{air}, \text{contaminant} \}$. The standard multiphase Darcy approach is used as the equation for the conservation of momentum\-: \[ v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mbox{\bf K} \left(\text{grad}\, p_\alpha - \varrho_{\alpha} \mbox{\bf g} \right) \]
\-By inserting this into the equations for the conservation of the components, one transport equation for each component is obtained as \begin{eqnarray*} && \phi \frac{\partial (\sum_\alpha \varrho_{\text{mol}, \alpha} x_\alpha^\kappa S_\alpha )}{\partial t} - \sum\limits_\alpha \text{div} \left\{ \frac{k_{r\alpha}}{\mu_\alpha} \varrho_{\text{mol}, \alpha} x_\alpha^\kappa \mbox{\bf K} (\text{grad}\; p_\alpha - \varrho_{\text{mass}, \alpha} \mbox{\bf g}) \right\} \nonumber \\ \nonumber \\ && - \sum\limits_\alpha \text{div} \left\{ D_{pm}^\kappa \varrho_{\text{mol}, \alpha } \text{grad} \; x_\alpha^\kappa \right\} - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha \end{eqnarray*} \-By inserting this into the equations for the conservation of the components, one transport equation for each component is obtained as \begin{eqnarray*} && \phi \frac{\partial (\sum_\alpha \varrho_{\text{mol}, \alpha} x_\alpha^\kappa S_\alpha )}{\partial t} - \sum\limits_\alpha \text{div} \left\{ \frac{k_{r\alpha}}{\mu_\alpha} \varrho_{\text{mol}, \alpha} x_\alpha^\kappa \mbox{\bf K} (\text{grad}\; p_\alpha - \varrho_{\text{mass}, \alpha} \mbox{\bf g}) \right\} \nonumber \\ \nonumber \\ && - \sum\limits_\alpha \text{div} \left\{ D_{pm}^\kappa \varrho_{\text{mol}, \alpha } \text{grad} \; x_\alpha^\kappa \right\} - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha \end{eqnarray*}
......
...@@ -30,7 +30,7 @@ where term 1 describes the changes of entity $u$ within a control volume over ti ...@@ -30,7 +30,7 @@ where term 1 describes the changes of entity $u$ within a control volume over ti
Like the FE method, the BOX-method follows the principle of weighted residuals. In the function $f(u)$ the unknown $u$ is approximated by discrete values at the nodes of the FE mesh $\hat u_i$ and linear basis functions $N_i$ yielding an approximate function $f(\tilde u)$. For $u\in \lbrace \mathbf v, p, x^\kappa \rbrace$ this means Like the FE method, the BOX-method follows the principle of weighted residuals. In the function $f(u)$ the unknown $u$ is approximated by discrete values at the nodes of the FE mesh $\hat u_i$ and linear basis functions $N_i$ yielding an approximate function $f(\tilde u)$. For $u\in \lbrace \mathbf v, p, x^\kappa \rbrace$ this means
\begin{minipage}[b]{0.5\textwidth} \begin{minipage}[b]{0.47\textwidth}
\begin{equation} \begin{equation}
\label{eq:p} \label{eq:p}
\tilde p = \sum_i N_i \hat{p_i} \tilde p = \sum_i N_i \hat{p_i}
...@@ -45,7 +45,7 @@ Like the FE method, the BOX-method follows the principle of weighted residuals. ...@@ -45,7 +45,7 @@ Like the FE method, the BOX-method follows the principle of weighted residuals.
\end{equation} \end{equation}
\end{minipage} \end{minipage}
\hfill \hfill
\begin{minipage}[b]{0.5\textwidth} \begin{minipage}[b]{0.47\textwidth}
\begin{equation} \begin{equation}
\label{eq:dp} \label{eq:dp}
\nabla \tilde p = \sum_i \nabla N_i \hat{p_i} \nabla \tilde p = \sum_i \nabla N_i \hat{p_i}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment