Skip to content
Snippets Groups Projects
Commit 8dcfa0f5 authored by Nicolas Schwenck's avatar Nicolas Schwenck
Browse files

changed documentation for unit component, reviewed by Beatrix

git-svn-id: svn://svn.iws.uni-stuttgart.de/DUMUX/dumux/trunk@12924 2fb0f335-1f38-0410-981e-8018bf24f1b0
parent 1ba0ffd7
No related branches found
No related tags found
No related merge requests found
...@@ -32,7 +32,7 @@ namespace Dumux ...@@ -32,7 +32,7 @@ namespace Dumux
/*! /*!
* \ingroup Components * \ingroup Components
* *
* \brief Rough estimate for testing purposes of water. * \brief A component which returns one for all liquid properties.
* *
* \tparam Scalar The type used for scalar values * \tparam Scalar The type used for scalar values
*/ */
...@@ -42,7 +42,7 @@ class Unit : public Component<Scalar, Unit<Scalar> > ...@@ -42,7 +42,7 @@ class Unit : public Component<Scalar, Unit<Scalar> >
public: public:
/*! /*!
* \brief A human readable name for the water. * \brief A human readable name for the component.
*/ */
static const char *name() static const char *name()
{ return "Unit"; } { return "Unit"; }
...@@ -54,7 +54,7 @@ public: ...@@ -54,7 +54,7 @@ public:
{ return false; } { return false; }
/*! /*!
* \brief Rough estimate of the density of water \f$\mathrm{[kg/m^3]}\f$. * \brief Sets the density to one \f$\mathrm{[kg/m^3]}\f$.
* *
* \param temperature temperature of component in \f$\mathrm{[K]}\f$ * \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
...@@ -65,7 +65,7 @@ public: ...@@ -65,7 +65,7 @@ public:
} }
/*! /*!
* \brief Rough estimate of the viscosity of water in \f$\mathrm{[Pa*s]}\f$. * \brief Sets the viscosity to one \f$\mathrm{[Pa*s]}\f$.
* *
* \param temperature temperature of component in \f$\mathrm{[K]}\f$ * \param temperature temperature of component in \f$\mathrm{[K]}\f$
* \param pressure pressure of component in \f$\mathrm{[Pa]}\f$ * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment