Skip to content
Snippets Groups Projects
Commit 971a6bee authored by Timo Koch's avatar Timo Koch Committed by Kilian Weishaupt
Browse files

[random] Add simple slightly biased but portable random distributions

parent b1d93bd2
No related branches found
No related tags found
1 merge request!2208Feature/pore network model
...@@ -35,6 +35,7 @@ partial.hh ...@@ -35,6 +35,7 @@ partial.hh
pdesolver.hh pdesolver.hh
pointsource.hh pointsource.hh
properties.hh properties.hh
random.hh
reorderingdofmapper.hh reorderingdofmapper.hh
reservedblockvector.hh reservedblockvector.hh
spline.hh spline.hh
......
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
* \ingroup Common
* \brief Some tools for random number generation
*/
#ifndef DUMUX_COMMON_RANDOM_HH
#define DUMUX_COMMON_RANDOM_HH
#include <random>
#include <type_traits>
#include <cstdint>
namespace Dumux {
/*!
* \file
* \brief A simple uniform distribution
* based on a biased uniform number generator
* \note Use this if you need a fast library implementation independent generator
* without strict requirements about the bias
* \note We try to stay close to https://en.cppreference.com/w/cpp/numeric/random/uniform_real_distribution
*/
template<class Scalar = double>
class SimpleUniformDistribution
{
struct Parameters
{
Parameters(Scalar a, Scalar b)
: a_(a), b_(b) {}
Scalar a() const { return a_; }
Scalar b() const { return b_; }
private:
Scalar a_, b_;
};
public:
using param_type = Parameters;
using result_type = Scalar;
explicit SimpleUniformDistribution(Scalar min, Scalar max = 1.0)
: offset_(min)
, size_(max-min)
{}
explicit SimpleUniformDistribution(const Parameters& p)
: SimpleUniformDistribution(p.a(), p.b())
{}
SimpleUniformDistribution()
: SimpleUniformDistribution(0.0)
{}
void param(const Parameters& p)
{
offset_ = p.a();
size_ = p.b()-p.a();
}
Parameters param() const
{ return { offset_, offset_+size_ }; }
Scalar a() const { return offset_; }
Scalar b() const { return offset_ + size_; }
template<class Generator,
typename std::enable_if_t<std::is_same_v<typename Generator::result_type, std::uint_fast32_t>, int> = 0>
Scalar operator()(Generator& gen)
{ return offset_ + size_*(0x1.0p-32 * gen()); }
private:
Scalar offset_;
Scalar size_;
};
/*!
* \file
* \brief A simple normal distribution
* based on a biased uniform number generator and the Box-Mueller transform
* \note Use this if you need a fast library implementation independent generator
* without strict requirements about the bias
* \note We try to stay close to https://en.cppreference.com/w/cpp/numeric/random/normal_distribution
*/
template<class Scalar = double>
class SimpleNormalDistribution
{
struct Parameters
{
Parameters(Scalar m, Scalar s)
: m_(m), s_(s) {}
Scalar m() const { return m_; }
Scalar s() const { return s_; }
private:
Scalar m_, s_;
};
public:
using param_type = Parameters;
using result_type = Scalar;
explicit SimpleNormalDistribution(Scalar mean, Scalar stddev = 1.0)
: mean_(mean)
, stddev_(stddev)
, isCached_(false)
{}
explicit SimpleNormalDistribution(const Parameters& p)
: SimpleNormalDistribution(p.m(), p.s())
{}
SimpleNormalDistribution()
: SimpleNormalDistribution(0.0)
{}
void param(const Parameters& p)
{
mean_ = p.m();
stddev_ = p.s();
}
Parameters param() const
{ return { mean_, stddev_ }; }
Scalar m() const { return mean_; }
Scalar s() const { return stddev_; }
template<class Generator>
Scalar operator()(Generator& gen)
{
if (isCached_)
{
isCached_ = false;
return cachedValue_;
}
// Box-Mueller transform (https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform)
const auto [u1, u2] = generateUniformPair_(gen);
using std::sqrt; using std::log;
using std::cos; using std::sin;
constexpr Scalar twoPi = 2.0 * M_PI;
const Scalar magnitude = stddev_ * sqrt(-2.0 * log(u1));
const Scalar z0 = magnitude * cos(twoPi * u2) + mean_;
const Scalar z1 = magnitude * sin(twoPi * u2) + mean_;
cachedValue_ = z0;
isCached_ = true;
return z1;
}
private:
template<class Generator,
typename std::enable_if_t<std::is_same_v<typename Generator::result_type, std::uint_fast32_t>, int> = 0>
auto generateUniformPair_(Generator& gen)
{
// biased uniform number generator (0,1)
// https://www.pcg-random.org/posts/bounded-rands.html
constexpr Scalar eps = std::numeric_limits<Scalar>::epsilon();
Scalar u1 = 0.0, u2 = 0.0;
do {
u1 = 0x1.0p-32 * gen();
u2 = 0x1.0p-32 * gen();
} while (u1 <= eps);
return std::make_pair(u1, u2);
}
Scalar mean_;
Scalar stddev_;
bool isCached_;
Scalar cachedValue_;
};
/*!
* \file
* \brief A simple log-normal distribution
* \note Use this if you need a fast library implementation independent generator
* without strict requirements about the bias
* \note We try to stay close to https://en.cppreference.com/w/cpp/numeric/random/lognormal_distribution
*/
template<class Scalar = double>
class SimpleLogNormalDistribution
{
using Parameters = typename SimpleNormalDistribution<Scalar>::param_type;
public:
using param_type = Parameters;
using result_type = Scalar;
explicit SimpleLogNormalDistribution(Scalar mean, Scalar stddev = 1.0)
: normal_(mean, stddev)
{}
explicit SimpleLogNormalDistribution(const Parameters& p)
: SimpleLogNormalDistribution(p.mean, p.stddev)
{}
SimpleLogNormalDistribution()
: SimpleLogNormalDistribution(0.0)
{}
void param(const Parameters& p)
{ normal_.param(p); }
Parameters param() const
{ return normal_.param(); }
Scalar m() const { return normal_.m(); }
Scalar s() const { return normal_.s(); }
template<class Generator>
Scalar operator()(Generator& gen)
{
using std::exp;
return exp(normal_(gen));
}
private:
SimpleNormalDistribution<Scalar> normal_;
};
} // end namespace Dumux
#endif
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment