Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dumux
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
dumux-repositories
dumux
Commits
b60de63c
Commit
b60de63c
authored
4 years ago
by
Kilian Weishaupt
Browse files
Options
Downloads
Patches
Plain Diff
[compositionalflash] Deprecate interface with porosity
parent
10059fef
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!2271
Cleanup/comp flash
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
dumux/material/constraintsolvers/compositionalflash.hh
+42
-23
42 additions, 23 deletions
dumux/material/constraintsolvers/compositionalflash.hh
with
42 additions
and
23 deletions
dumux/material/constraintsolvers/compositionalflash.hh
+
42
−
23
View file @
b60de63c
...
@@ -65,6 +65,18 @@ class CompositionalFlash
...
@@ -65,6 +65,18 @@ class CompositionalFlash
public
:
public
:
using
ComponentVector
=
Dune
::
FieldVector
<
Scalar
,
numComponents
>
;
using
ComponentVector
=
Dune
::
FieldVector
<
Scalar
,
numComponents
>
;
using
PhaseVector
=
Dune
::
FieldVector
<
Scalar
,
numPhases
>
;
using
PhaseVector
=
Dune
::
FieldVector
<
Scalar
,
numPhases
>
;
template
<
class
FluidState
>
[[
deprecated
(
"Use concentrationFlash2p2c without porosity argument. Will be removed after 3.3"
)]]
static
void
concentrationFlash2p2c
(
FluidState
&
fluidState
,
const
Scalar
&
Z0
,
const
PhaseVector
&
phasePressure
,
const
Scalar
&
porosity
,
const
Scalar
&
temperature
)
{
concentrationFlash2p2c
(
fluidState
,
Z0
,
phasePressure
,
temperature
);
}
/*!
/*!
* \name Concentration flash for a given feed fraction
* \name Concentration flash for a given feed fraction
*/
*/
...
@@ -85,15 +97,13 @@ public:
...
@@ -85,15 +97,13 @@ public:
* \param fluidState The sequential fluid State
* \param fluidState The sequential fluid State
* \param Z0 Feed mass fraction: Mass of first component per total mass \f$\mathrm{[-]}\f$
* \param Z0 Feed mass fraction: Mass of first component per total mass \f$\mathrm{[-]}\f$
* \param phasePressure Vector holding the pressure \f$\mathrm{[Pa]}\f$
* \param phasePressure Vector holding the pressure \f$\mathrm{[Pa]}\f$
* \param porosity Porosity \f$\mathrm{[-]}\f$
* \param temperature Temperature \f$\mathrm{[K]}\f$
* \param temperature Temperature \f$\mathrm{[K]}\f$
*/
*/
template
<
class
FluidState
>
template
<
class
FluidState
>
static
void
concentrationFlash2p2c
(
FluidState
&
fluidState
,
static
void
concentrationFlash2p2c
(
FluidState
&
fluidState
,
const
Scalar
&
Z0
,
const
Scalar
Z0
,
const
PhaseVector
&
phasePressure
,
const
PhaseVector
&
phasePressure
,
const
Scalar
&
porosity
,
const
Scalar
temperature
)
const
Scalar
&
temperature
)
{
{
#ifndef NDEBUG
#ifndef NDEBUG
// this solver can only handle fluid systems which
// this solver can only handle fluid systems which
...
@@ -110,10 +120,10 @@ public:
...
@@ -110,10 +120,10 @@ public:
fluidState
.
setPressure
(
phase1Idx
,
phasePressure
[
phase1Idx
]);
fluidState
.
setPressure
(
phase1Idx
,
phasePressure
[
phase1Idx
]);
// mole equilibrium ratios k for in case first phase is reference phase
// mole equilibrium ratios k for in case first phase is reference phase
Scalar
k10
=
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase0Idx
,
comp0Idx
)
*
fluidState
.
pressure
(
phase0Idx
)
const
Scalar
k10
=
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase0Idx
,
comp0Idx
)
*
fluidState
.
pressure
(
phase0Idx
)
/
(
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase1Idx
,
comp0Idx
)
*
fluidState
.
pressure
(
phase1Idx
));
/
(
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase1Idx
,
comp0Idx
)
*
fluidState
.
pressure
(
phase1Idx
));
Scalar
k11
=
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase0Idx
,
comp1Idx
)
*
fluidState
.
pressure
(
phase0Idx
)
const
Scalar
k11
=
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase0Idx
,
comp1Idx
)
*
fluidState
.
pressure
(
phase0Idx
)
/
(
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase1Idx
,
comp1Idx
)
*
fluidState
.
pressure
(
phase1Idx
));
/
(
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase1Idx
,
comp1Idx
)
*
fluidState
.
pressure
(
phase1Idx
));
// get mole fraction from equilibrium constants
// get mole fraction from equilibrium constants
fluidState
.
setMoleFraction
(
phase0Idx
,
comp0Idx
,
((
1.
-
k11
)
/
(
k10
-
k11
)));
fluidState
.
setMoleFraction
(
phase0Idx
,
comp0Idx
,
((
1.
-
k11
)
/
(
k10
-
k11
)));
...
@@ -122,11 +132,11 @@ public:
...
@@ -122,11 +132,11 @@ public:
fluidState
.
setMoleFraction
(
phase1Idx
,
comp1Idx
,
1.0
-
fluidState
.
moleFraction
(
phase1Idx
,
comp0Idx
));
fluidState
.
setMoleFraction
(
phase1Idx
,
comp1Idx
,
1.0
-
fluidState
.
moleFraction
(
phase1Idx
,
comp0Idx
));
// mass equilibrium ratios K for in case first phase is reference phase
// mass equilibrium ratios K for in case first phase is reference phase
Scalar
K10
=
fluidState
.
massFraction
(
phase1Idx
,
comp0Idx
)
/
fluidState
.
massFraction
(
phase0Idx
,
comp0Idx
);
const
Scalar
K10
=
fluidState
.
massFraction
(
phase1Idx
,
comp0Idx
)
/
fluidState
.
massFraction
(
phase0Idx
,
comp0Idx
);
Scalar
K11
=
(
1.
-
fluidState
.
massFraction
(
phase1Idx
,
comp0Idx
))
/
(
1.
-
fluidState
.
massFraction
(
phase0Idx
,
comp0Idx
));
const
Scalar
K11
=
(
1.
-
fluidState
.
massFraction
(
phase1Idx
,
comp0Idx
))
/
(
1.
-
fluidState
.
massFraction
(
phase0Idx
,
comp0Idx
));
// phase mass fraction Nu (ratio of phase mass to total phase mass) of first phase
// phase mass fraction Nu (ratio of phase mass to total phase mass) of first phase
Scalar
Nu0
=
1.
+
((
Z0
*
(
K10
-
1.
))
+
((
1.
-
Z0
)
*
(
K11
-
1.
)))
/
((
K11
-
1.
)
*
(
K10
-
1.
));
const
Scalar
Nu0
=
1.
+
((
Z0
*
(
K10
-
1.
))
+
((
1.
-
Z0
)
*
(
K11
-
1.
)))
/
((
K11
-
1.
)
*
(
K10
-
1.
));
// an array of the phase mass fractions from which we will compute the saturations
// an array of the phase mass fractions from which we will compute the saturations
std
::
array
<
Scalar
,
2
>
phaseMassFraction
;
std
::
array
<
Scalar
,
2
>
phaseMassFraction
;
...
@@ -204,6 +214,17 @@ public:
...
@@ -204,6 +214,17 @@ public:
}
}
//@}
//@}
template
<
class
FluidState
>
[[
deprecated
(
"Use saturationFlash2p2c without porosity argument. Will be removed after 3.3"
)]]
static
void
saturationFlash2p2c
(
FluidState
&
fluidState
,
const
Scalar
&
saturation
,
const
PhaseVector
&
phasePressure
,
const
Scalar
&
porosity
,
const
Scalar
&
temperature
)
{
saturationFlash2p2c
(
fluidState
,
saturation
,
phasePressure
,
temperature
);
}
/*!
/*!
* \name Saturation flash for a given saturation (e.g. at boundary)
* \name Saturation flash for a given saturation (e.g. at boundary)
*/
*/
...
@@ -217,15 +238,13 @@ public:
...
@@ -217,15 +238,13 @@ public:
* \param fluidState The sequential fluid state
* \param fluidState The sequential fluid state
* \param saturation Saturation of phase 1 \f$\mathrm{[-]}\f$
* \param saturation Saturation of phase 1 \f$\mathrm{[-]}\f$
* \param phasePressure Vector holding the pressure \f$\mathrm{[Pa]}\f$
* \param phasePressure Vector holding the pressure \f$\mathrm{[Pa]}\f$
* \param porosity Porosity \f$\mathrm{[-]}\f$
* \param temperature Temperature \f$\mathrm{[K]}\f$
* \param temperature Temperature \f$\mathrm{[K]}\f$
*/
*/
template
<
class
FluidState
>
template
<
class
FluidState
>
static
void
saturationFlash2p2c
(
FluidState
&
fluidState
,
static
void
saturationFlash2p2c
(
FluidState
&
fluidState
,
const
Scalar
&
saturation
,
const
Scalar
saturation
,
const
PhaseVector
&
phasePressure
,
const
PhaseVector
&
phasePressure
,
const
Scalar
&
porosity
,
const
Scalar
temperature
)
const
Scalar
&
temperature
)
{
{
#ifndef NDEBUG
#ifndef NDEBUG
// this solver can only handle fluid systems which
// this solver can only handle fluid systems which
...
@@ -242,10 +261,10 @@ public:
...
@@ -242,10 +261,10 @@ public:
fluidState
.
setPressure
(
phase1Idx
,
phasePressure
[
phase1Idx
]);
fluidState
.
setPressure
(
phase1Idx
,
phasePressure
[
phase1Idx
]);
// mole equilibrium ratios k for in case first phase is reference phase
// mole equilibrium ratios k for in case first phase is reference phase
Scalar
k10
=
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase0Idx
,
comp0Idx
)
*
fluidState
.
pressure
(
phase0Idx
)
const
Scalar
k10
=
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase0Idx
,
comp0Idx
)
*
fluidState
.
pressure
(
phase0Idx
)
/
(
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase1Idx
,
comp0Idx
)
*
fluidState
.
pressure
(
phase1Idx
));
/
(
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase1Idx
,
comp0Idx
)
*
fluidState
.
pressure
(
phase1Idx
));
Scalar
k11
=
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase0Idx
,
comp1Idx
)
*
fluidState
.
pressure
(
phase0Idx
)
const
Scalar
k11
=
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase0Idx
,
comp1Idx
)
*
fluidState
.
pressure
(
phase0Idx
)
/
(
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase1Idx
,
comp1Idx
)
*
fluidState
.
pressure
(
phase1Idx
));
/
(
FluidSystem
::
fugacityCoefficient
(
fluidState
,
phase1Idx
,
comp1Idx
)
*
fluidState
.
pressure
(
phase1Idx
));
// get mole fraction from equilibrium constants
// get mole fraction from equilibrium constants
fluidState
.
setMoleFraction
(
phase0Idx
,
comp0Idx
,
((
1.
-
k11
)
/
(
k10
-
k11
)));
fluidState
.
setMoleFraction
(
phase0Idx
,
comp0Idx
,
((
1.
-
k11
)
/
(
k10
-
k11
)));
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment