Skip to content
Snippets Groups Projects
Commit fb081a09 authored by Timo Koch's avatar Timo Koch
Browse files

[example][1d3d] Add advection term in formula

parent cceb9987
No related branches found
No related tags found
1 merge request!3606[example][1d3d] Add advection term in formula
Pipeline #33515 passed
+3
...@@ -43,7 +43,7 @@ We solve the following coupled, mixed-dimensional PDE system: ...@@ -43,7 +43,7 @@ We solve the following coupled, mixed-dimensional PDE system:
```math ```math
\begin{align} \begin{align}
\frac{ \partial (\phi_\mathrm{T} \varrho_\mathrm{T} x_\mathrm{T})}{\partial t} - \nabla\cdot \left( \phi_\mathrm{T} D_{\text{app},\mathrm{T}} \varrho_\mathrm{T} \nabla x_\mathrm{T} \right) &= \hat{q} \Phi_\Lambda & \text{in} \quad \Omega, \\ \frac{ \partial (\phi_\mathrm{T} \varrho_\mathrm{T} x_\mathrm{T})}{\partial t} - \nabla\cdot \left( \phi_\mathrm{T} D_{\text{app},\mathrm{T}} \varrho_\mathrm{T} \nabla x_\mathrm{T} \right) &= \hat{q} \Phi_\Lambda & \text{in} \quad \Omega, \\
\frac{\partial (A_\mathrm{B} \varrho_\mathrm{B} x_\mathrm{B})}{\partial t} - \frac{\partial}{\partial s} \left( A_\mathrm{B} D_{\text{app},A_\mathrm{B}} \varrho_\mathrm{B} \frac{ \partial x_\mathrm{B}}{\partial s} \right) &= -\hat{q} & \text{on} \quad \Lambda, \\ \frac{\partial (A_\mathrm{B} \varrho_\mathrm{B} x_\mathrm{B})}{\partial t} + \frac{\partial}{\partial s} \left(A_\mathrm{B}v_\mathrm{B}\varrho_\mathrm{B}x_\mathrm{B} - A_\mathrm{B} D_{\text{app},A_\mathrm{B}} \varrho_\mathrm{B} \frac{ \partial x_\mathrm{B}}{\partial s} \right) &= -\hat{q} & \text{on} \quad \Lambda, \\
\hat{q} &= - \int_P C_M D \bar{\varrho} ( x_\mathrm{T} - \Pi x_\mathrm{B}) \mathrm{d}\zeta, \hat{q} &= - \int_P C_M D \bar{\varrho} ( x_\mathrm{T} - \Pi x_\mathrm{B}) \mathrm{d}\zeta,
\end{align} \end{align}
``` ```
...@@ -52,6 +52,7 @@ where the subscript T and B denote the tissue and the network (blood flow) compa ...@@ -52,6 +52,7 @@ where the subscript T and B denote the tissue and the network (blood flow) compa
$`x`$ is the tracer mole fraction, $`\varrho`$ the molar density of the mixture, $`\phi`$ is the porosity, $`x`$ is the tracer mole fraction, $`\varrho`$ the molar density of the mixture, $`\phi`$ is the porosity,
$`A_\mathrm{B}`$ denotes the network (vessel lumen) cross-sectional area, $`P`$ denotes the cross-sectional perimeter, $`A_\mathrm{B}`$ denotes the network (vessel lumen) cross-sectional area, $`P`$ denotes the cross-sectional perimeter,
$`D`$ is the free diffusion coefficient, $`D_{\text{app}}`$ apparent diffusion coefficients and $C_M$ a membrane diffusivity factor. $`D`$ is the free diffusion coefficient, $`D_{\text{app}}`$ apparent diffusion coefficients and $C_M$ a membrane diffusivity factor.
$`Q_\mathrm{B} := A_\mathrm{B}v_\mathrm{B}`$ is a given blood flow field transporting the tracer by advection.
Furthermore, isothermal conditions with a homogeneous temperature distribution of constant $`T=37^\circ C`$ are assumed. Furthermore, isothermal conditions with a homogeneous temperature distribution of constant $`T=37^\circ C`$ are assumed.
The 1D network PDE is formulated in terms of the local axial coordinate $`s`$. The 1D network PDE is formulated in terms of the local axial coordinate $`s`$.
......
...@@ -41,7 +41,7 @@ We solve the following coupled, mixed-dimensional PDE system: ...@@ -41,7 +41,7 @@ We solve the following coupled, mixed-dimensional PDE system:
```math ```math
\begin{align} \begin{align}
\frac{ \partial (\phi_\mathrm{T} \varrho_\mathrm{T} x_\mathrm{T})}{\partial t} - \nabla\cdot \left( \phi_\mathrm{T} D_{\text{app},\mathrm{T}} \varrho_\mathrm{T} \nabla x_\mathrm{T} \right) &= \hat{q} \Phi_\Lambda & \text{in} \quad \Omega, \\ \frac{ \partial (\phi_\mathrm{T} \varrho_\mathrm{T} x_\mathrm{T})}{\partial t} - \nabla\cdot \left( \phi_\mathrm{T} D_{\text{app},\mathrm{T}} \varrho_\mathrm{T} \nabla x_\mathrm{T} \right) &= \hat{q} \Phi_\Lambda & \text{in} \quad \Omega, \\
\frac{\partial (A_\mathrm{B} \varrho_\mathrm{B} x_\mathrm{B})}{\partial t} - \frac{\partial}{\partial s} \left( A_\mathrm{B} D_{\text{app},A_\mathrm{B}} \varrho_\mathrm{B} \frac{ \partial x_\mathrm{B}}{\partial s} \right) &= -\hat{q} & \text{on} \quad \Lambda, \\ \frac{\partial (A_\mathrm{B} \varrho_\mathrm{B} x_\mathrm{B})}{\partial t} + \frac{\partial}{\partial s} \left(A_\mathrm{B}v_\mathrm{B}\varrho_\mathrm{B}x_\mathrm{B} - A_\mathrm{B} D_{\text{app},A_\mathrm{B}} \varrho_\mathrm{B} \frac{ \partial x_\mathrm{B}}{\partial s} \right) &= -\hat{q} & \text{on} \quad \Lambda, \\
\hat{q} &= - \int_P C_M D \bar{\varrho} ( x_\mathrm{T} - \Pi x_\mathrm{B}) \mathrm{d}\zeta, \hat{q} &= - \int_P C_M D \bar{\varrho} ( x_\mathrm{T} - \Pi x_\mathrm{B}) \mathrm{d}\zeta,
\end{align} \end{align}
``` ```
...@@ -50,6 +50,7 @@ where the subscript T and B denote the tissue and the network (blood flow) compa ...@@ -50,6 +50,7 @@ where the subscript T and B denote the tissue and the network (blood flow) compa
$`x`$ is the tracer mole fraction, $`\varrho`$ the molar density of the mixture, $`\phi`$ is the porosity, $`x`$ is the tracer mole fraction, $`\varrho`$ the molar density of the mixture, $`\phi`$ is the porosity,
$`A_\mathrm{B}`$ denotes the network (vessel lumen) cross-sectional area, $`P`$ denotes the cross-sectional perimeter, $`A_\mathrm{B}`$ denotes the network (vessel lumen) cross-sectional area, $`P`$ denotes the cross-sectional perimeter,
$`D`$ is the free diffusion coefficient, $`D_{\text{app}}`$ apparent diffusion coefficients and $C_M$ a membrane diffusivity factor. $`D`$ is the free diffusion coefficient, $`D_{\text{app}}`$ apparent diffusion coefficients and $C_M$ a membrane diffusivity factor.
$`Q_\mathrm{B} := A_\mathrm{B}v_\mathrm{B}`$ is a given blood flow field transporting the tracer by advection.
Furthermore, isothermal conditions with a homogeneous temperature distribution of constant $`T=37^\circ C`$ are assumed. Furthermore, isothermal conditions with a homogeneous temperature distribution of constant $`T=37^\circ C`$ are assumed.
The 1D network PDE is formulated in terms of the local axial coordinate $`s`$. The 1D network PDE is formulated in terms of the local axial coordinate $`s`$.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment