Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dumux
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
dumux-repositories
dumux
Commits
fb081a09
Commit
fb081a09
authored
1 year ago
by
Timo Koch
Browse files
Options
Downloads
Patches
Plain Diff
[example][1d3d] Add advection term in formula
parent
cceb9987
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!3606
[example][1d3d] Add advection term in formula
Pipeline
#33515
passed
1 year ago
Stage: check-status
Stage: trigger dumux pipelines
+3
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/embedded_network_1d3d/README.md
+2
-1
2 additions, 1 deletion
examples/embedded_network_1d3d/README.md
examples/embedded_network_1d3d/doc/_intro.md
+2
-1
2 additions, 1 deletion
examples/embedded_network_1d3d/doc/_intro.md
with
4 additions
and
2 deletions
examples/embedded_network_1d3d/README.md
+
2
−
1
View file @
fb081a09
...
@@ -43,7 +43,7 @@ We solve the following coupled, mixed-dimensional PDE system:
...
@@ -43,7 +43,7 @@ We solve the following coupled, mixed-dimensional PDE system:
```
math
```
math
\begin{align}
\begin{align}
\frac{ \partial (\phi_\mathrm{T} \varrho_\mathrm{T} x_\mathrm{T})}{\partial t} - \nabla\cdot \left( \phi_\mathrm{T} D_{\text{app},\mathrm{T}} \varrho_\mathrm{T} \nabla x_\mathrm{T} \right) &= \hat{q} \Phi_\Lambda & \text{in} \quad \Omega, \\
\frac{ \partial (\phi_\mathrm{T} \varrho_\mathrm{T} x_\mathrm{T})}{\partial t} - \nabla\cdot \left( \phi_\mathrm{T} D_{\text{app},\mathrm{T}} \varrho_\mathrm{T} \nabla x_\mathrm{T} \right) &= \hat{q} \Phi_\Lambda & \text{in} \quad \Omega, \\
\frac{\partial (A_\mathrm{B} \varrho_\mathrm{B} x_\mathrm{B})}{\partial t}
-
\frac{\partial}{\partial s} \left( A_\mathrm{B} D_{\text{app},A_\mathrm{B}} \varrho_\mathrm{B} \frac{ \partial x_\mathrm{B}}{\partial s} \right) &= -\hat{q} & \text{on} \quad \Lambda, \\
\frac{\partial (A_\mathrm{B} \varrho_\mathrm{B} x_\mathrm{B})}{\partial t}
+
\frac{\partial}{\partial s} \left(
A_\mathrm{B}v_\mathrm{B}\varrho_\mathrm{B}x_\mathrm{B} -
A_\mathrm{B} D_{\text{app},A_\mathrm{B}} \varrho_\mathrm{B} \frac{ \partial x_\mathrm{B}}{\partial s} \right) &= -\hat{q} & \text{on} \quad \Lambda, \\
\hat{q} &= - \int_P C_M D \bar{\varrho} ( x_\mathrm{T} - \Pi x_\mathrm{B}) \mathrm{d}\zeta,
\hat{q} &= - \int_P C_M D \bar{\varrho} ( x_\mathrm{T} - \Pi x_\mathrm{B}) \mathrm{d}\zeta,
\end{align}
\end{align}
```
```
...
@@ -52,6 +52,7 @@ where the subscript T and B denote the tissue and the network (blood flow) compa
...
@@ -52,6 +52,7 @@ where the subscript T and B denote the tissue and the network (blood flow) compa
$
`x`
$ is the tracer mole fraction, $
`\varrho`
$ the molar density of the mixture, $
`\phi`
$ is the porosity,
$
`x`
$ is the tracer mole fraction, $
`\varrho`
$ the molar density of the mixture, $
`\phi`
$ is the porosity,
$
`A_\mathrm{B}`
$ denotes the network (vessel lumen) cross-sectional area, $
`P`
$ denotes the cross-sectional perimeter,
$
`A_\mathrm{B}`
$ denotes the network (vessel lumen) cross-sectional area, $
`P`
$ denotes the cross-sectional perimeter,
$
`D`
$ is the free diffusion coefficient, $
`D_{\text{app}}`
$ apparent diffusion coefficients and $C_M$ a membrane diffusivity factor.
$
`D`
$ is the free diffusion coefficient, $
`D_{\text{app}}`
$ apparent diffusion coefficients and $C_M$ a membrane diffusivity factor.
$
`Q_\mathrm{B} := A_\mathrm{B}v_\mathrm{B}`
$ is a given blood flow field transporting the tracer by advection.
Furthermore, isothermal conditions with a homogeneous temperature distribution of constant $
`T=37^\circ C`
$ are assumed.
Furthermore, isothermal conditions with a homogeneous temperature distribution of constant $
`T=37^\circ C`
$ are assumed.
The 1D network PDE is formulated in terms of the local axial coordinate $
`s`
$.
The 1D network PDE is formulated in terms of the local axial coordinate $
`s`
$.
...
...
This diff is collapsed.
Click to expand it.
examples/embedded_network_1d3d/doc/_intro.md
+
2
−
1
View file @
fb081a09
...
@@ -41,7 +41,7 @@ We solve the following coupled, mixed-dimensional PDE system:
...
@@ -41,7 +41,7 @@ We solve the following coupled, mixed-dimensional PDE system:
```
math
```
math
\begin{align}
\begin{align}
\frac{ \partial (\phi_\mathrm{T} \varrho_\mathrm{T} x_\mathrm{T})}{\partial t} - \nabla\cdot \left( \phi_\mathrm{T} D_{\text{app},\mathrm{T}} \varrho_\mathrm{T} \nabla x_\mathrm{T} \right) &= \hat{q} \Phi_\Lambda & \text{in} \quad \Omega, \\
\frac{ \partial (\phi_\mathrm{T} \varrho_\mathrm{T} x_\mathrm{T})}{\partial t} - \nabla\cdot \left( \phi_\mathrm{T} D_{\text{app},\mathrm{T}} \varrho_\mathrm{T} \nabla x_\mathrm{T} \right) &= \hat{q} \Phi_\Lambda & \text{in} \quad \Omega, \\
\frac{\partial (A_\mathrm{B} \varrho_\mathrm{B} x_\mathrm{B})}{\partial t}
-
\frac{\partial}{\partial s} \left( A_\mathrm{B} D_{\text{app},A_\mathrm{B}} \varrho_\mathrm{B} \frac{ \partial x_\mathrm{B}}{\partial s} \right) &= -\hat{q} & \text{on} \quad \Lambda, \\
\frac{\partial (A_\mathrm{B} \varrho_\mathrm{B} x_\mathrm{B})}{\partial t}
+
\frac{\partial}{\partial s} \left(
A_\mathrm{B}v_\mathrm{B}\varrho_\mathrm{B}x_\mathrm{B} -
A_\mathrm{B} D_{\text{app},A_\mathrm{B}} \varrho_\mathrm{B} \frac{ \partial x_\mathrm{B}}{\partial s} \right) &= -\hat{q} & \text{on} \quad \Lambda, \\
\hat{q} &= - \int_P C_M D \bar{\varrho} ( x_\mathrm{T} - \Pi x_\mathrm{B}) \mathrm{d}\zeta,
\hat{q} &= - \int_P C_M D \bar{\varrho} ( x_\mathrm{T} - \Pi x_\mathrm{B}) \mathrm{d}\zeta,
\end{align}
\end{align}
```
```
...
@@ -50,6 +50,7 @@ where the subscript T and B denote the tissue and the network (blood flow) compa
...
@@ -50,6 +50,7 @@ where the subscript T and B denote the tissue and the network (blood flow) compa
$
`x`
$ is the tracer mole fraction, $
`\varrho`
$ the molar density of the mixture, $
`\phi`
$ is the porosity,
$
`x`
$ is the tracer mole fraction, $
`\varrho`
$ the molar density of the mixture, $
`\phi`
$ is the porosity,
$
`A_\mathrm{B}`
$ denotes the network (vessel lumen) cross-sectional area, $
`P`
$ denotes the cross-sectional perimeter,
$
`A_\mathrm{B}`
$ denotes the network (vessel lumen) cross-sectional area, $
`P`
$ denotes the cross-sectional perimeter,
$
`D`
$ is the free diffusion coefficient, $
`D_{\text{app}}`
$ apparent diffusion coefficients and $C_M$ a membrane diffusivity factor.
$
`D`
$ is the free diffusion coefficient, $
`D_{\text{app}}`
$ apparent diffusion coefficients and $C_M$ a membrane diffusivity factor.
$
`Q_\mathrm{B} := A_\mathrm{B}v_\mathrm{B}`
$ is a given blood flow field transporting the tracer by advection.
Furthermore, isothermal conditions with a homogeneous temperature distribution of constant $
`T=37^\circ C`
$ are assumed.
Furthermore, isothermal conditions with a homogeneous temperature distribution of constant $
`T=37^\circ C`
$ are assumed.
The 1D network PDE is formulated in terms of the local axial coordinate $
`s`
$.
The 1D network PDE is formulated in terms of the local axial coordinate $
`s`
$.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment