Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
BayesValidRox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
inversemodeling
BayesValidRox
Commits
79ca2180
Commit
79ca2180
authored
3 years ago
by
Farid Mohammadi
Browse files
Options
Downloads
Patches
Plain Diff
[PA-A][util]add a post_plot with barchart for all models.
parent
35676948
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
BayesValidRox/tests/PA-A/util/post_plot_PAPER_v2.py
+122
-0
122 additions, 0 deletions
BayesValidRox/tests/PA-A/util/post_plot_PAPER_v2.py
with
122 additions
and
0 deletions
BayesValidRox/tests/PA-A/util/post_plot_PAPER_v2.py
0 → 100644
+
122
−
0
View file @
79ca2180
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 18 08:28:13 2020
@author: farid
"""
import
numpy
as
np
import
os
import
sys
import
joblib
import
seaborn
as
sns
import
h5py
import
pandas
as
pd
import
matplotlib.pylab
as
plt
# Add BayesValidRox path
sys
.
path
.
insert
(
0
,
"
./../../../../BayesValidRox/
"
)
plt
.
rcParams
.
update
({
'
lines.markeredgewidth
'
:
1
})
def
postPredictiveplot
(
modelNames
,
result_folder
=
"
.
"
,
case
=
"
Calib
"
,
inclusion
=
"
squared
"
,
inletLoc
=
"
top
"
,
bins
=
"
auto
"
):
OutputDir
=
f
"
../
{
result_folder
}
/postPredPlots_
{
case
}
"
if
not
os
.
path
.
exists
(
OutputDir
):
os
.
makedirs
(
OutputDir
)
c_l
=
[
'
orange
'
,
'
royalblue
'
,
'
violet
'
,
'
forestgreen
'
]
allMeanPred
,
allStdPred
=
{},
{}
point_IDs
=
{}
for
outName
in
[
'
velocity [m/s]
'
,
'
p
'
]:
allMeanPred
[
outName
],
allStdPred
[
outName
]
=
{},
{}
for
name
in
modelNames
:
modelName
=
f
'
ffpm-
{
name
}
_
{
inclusion
}
_inclusion_
{
inletLoc
}
Inflow
'
if
case
==
'
calib
'
:
directory
=
f
"
../
{
result_folder
}
/outputs_
{
modelName
}
/Outputs_Bayes_
{
modelName
}
_
{
case
}
"
else
:
directory
=
f
"
../
{
result_folder
}
/outputs_
{
modelName
}
/Outputs_Bayes_
{
modelName
}
-valid_
{
case
}
"
# Load Post pred file
f
=
h5py
.
File
(
f
"
{
directory
}
/postPredictive.hdf5
"
,
"
r+
"
)
# Load PCEModel
with
open
(
f
"
../
{
result_folder
}
/outputs_
{
modelName
}
/PCEModel_
{
modelName
}
.pkl
"
,
"
rb
"
)
as
input
:
PCEModel
=
joblib
.
load
(
input
)
if
case
==
"
Calib
"
:
data
=
pd
.
read_csv
(
f
"
../
{
PCEModel
.
ModelObj
.
MeasurementFile
}
"
)
else
:
data
=
pd
.
read_csv
(
f
"
../
{
PCEModel
.
ModelObj
.
MeasurementFileValid
}
"
)
obs
=
data
[
outName
][
~
np
.
isnan
(
data
[
outName
])].
values
# Generate Prior Predictive
# priorPred, std = PCEModel.eval_metamodel(nsamples=10000)
# Create a dataframe containing the predictions
# Add PointIds to the dict
point_IDs
[
outName
]
=
np
.
array
(
f
[
f
"
x_values/
{
outName
}
"
])
# Modify the name
if
'
BJ
'
in
name
:
name
=
'
Classical IC
'
elif
'
ER
'
in
name
:
name
=
'
Generalized IC
'
elif
'
pnm
'
in
name
:
name
=
'
Pore Network
'
# Add post predictions' mean and std to the dict
postPred
=
np
.
array
(
f
[
f
"
EDY/
{
outName
}
"
])
allMeanPred
[
outName
][
name
]
=
np
.
mean
(
postPred
,
axis
=
0
)
allStdPred
[
outName
][
name
]
=
np
.
std
(
postPred
,
axis
=
0
)
# Add data to the dict
allMeanPred
[
outName
][
'
Ref. data
'
]
=
obs
f
.
close
()
# Plot barchart
for
outName
in
[
'
velocity [m/s]
'
,
'
p
'
]:
fig
,
ax
=
plt
.
subplots
()
dict1
=
{
"
Point ID
"
:
point_IDs
[
outName
]}
dict2
=
allMeanPred
[
outName
]
right_order
=
[
'
Classical IC
'
,
'
Generalized IC
'
,
'
Pore Network
'
,
'
Ref. data
'
]
reordered_dict2
=
{
k
:
dict2
[
k
]
for
k
in
right_order
}
std
=
{
k
:
allStdPred
[
outName
][
k
]
for
k
in
right_order
[:
-
1
]}
df
=
pd
.
DataFrame
({
**
dict1
,
**
reordered_dict2
})
width
=
0.4
if
outName
==
'
p
'
else
0.8
df
.
plot
(
x
=
"
Point ID
"
,
y
=
right_order
,
kind
=
"
bar
"
,
ax
=
ax
,
width
=
width
,
yerr
=
std
,
capsize
=
5
,
rot
=
0
,
edgecolor
=
"
black
"
,
lw
=
1
,
color
=
c_l
)
if
outName
!=
"
p
"
:
ax
.
set_ylabel
(
outName
)
else
:
ax
.
set_ylabel
(
"
pressure [bar]
"
)
# save the current figure
plotname
=
outName
if
outName
==
"
p
"
else
"
velocity
"
fig
.
savefig
(
f
"
./
{
OutputDir
}
/
{
plotname
}
_barchart.svg
"
,
bbox_inches
=
"
tight
"
)
fig
.
savefig
(
f
"
./
{
OutputDir
}
/
{
plotname
}
_barchart.pdf
"
,
bbox_inches
=
"
tight
"
)
plt
.
close
()
return
allMeanPred
,
allStdPred
modelNames
=
[
'
stokesdarcyBJ
'
,
'
stokesdarcyER
'
,
'
stokespnm
'
]
inletLoc
=
'
top
'
# top or left
inclusion
=
'
squared
'
# squared or circular
path
=
"
Results_09_01_2022_topInflow
"
case
=
'
Valid
'
allMeanPred
,
allStdPred
=
postPredictiveplot
(
modelNames
,
inclusion
=
inclusion
,
inletLoc
=
inletLoc
,
result_folder
=
path
,
case
=
'
Valid
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment