Skip to content
Snippets Groups Projects
Commit 79ca2180 authored by Farid Mohammadi's avatar Farid Mohammadi
Browse files

[PA-A][util]add a post_plot with barchart for all models.

parent 35676948
No related branches found
No related tags found
No related merge requests found
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 18 08:28:13 2020
@author: farid
"""
import numpy as np
import os
import sys
import joblib
import seaborn as sns
import h5py
import pandas as pd
import matplotlib.pylab as plt
# Add BayesValidRox path
sys.path.insert(0, "./../../../../BayesValidRox/")
plt.rcParams.update({'lines.markeredgewidth': 1})
def postPredictiveplot(modelNames, result_folder= ".", case="Calib",
inclusion="squared", inletLoc="top", bins="auto"):
OutputDir = f"../{result_folder}/postPredPlots_{case}"
if not os.path.exists(OutputDir):
os.makedirs(OutputDir)
c_l = ['orange', 'royalblue', 'violet', 'forestgreen']
allMeanPred, allStdPred = {}, {}
point_IDs = {}
for outName in ['velocity [m/s]', 'p']:
allMeanPred[outName], allStdPred[outName] = {}, {}
for name in modelNames:
modelName = f'ffpm-{name}_{inclusion}_inclusion_{inletLoc}Inflow'
if case == 'calib':
directory = f"../{result_folder}/outputs_{modelName}/Outputs_Bayes_{modelName}_{case}"
else:
directory = f"../{result_folder}/outputs_{modelName}/Outputs_Bayes_{modelName}-valid_{case}"
# Load Post pred file
f = h5py.File(f"{directory}/postPredictive.hdf5", "r+")
# Load PCEModel
with open(f"../{result_folder}/outputs_{modelName}/PCEModel_{modelName}.pkl", "rb") as input:
PCEModel = joblib.load(input)
if case == "Calib":
data = pd.read_csv(f"../{PCEModel.ModelObj.MeasurementFile}")
else:
data = pd.read_csv(f"../{PCEModel.ModelObj.MeasurementFileValid}")
obs = data[outName][~np.isnan(data[outName])].values
# Generate Prior Predictive
# priorPred, std = PCEModel.eval_metamodel(nsamples=10000)
# Create a dataframe containing the predictions
# Add PointIds to the dict
point_IDs[outName] = np.array(f[f"x_values/{outName}"])
# Modify the name
if 'BJ' in name:
name = 'Classical IC'
elif 'ER' in name:
name = 'Generalized IC'
elif 'pnm' in name:
name = 'Pore Network'
# Add post predictions' mean and std to the dict
postPred = np.array(f[f"EDY/{outName}"])
allMeanPred[outName][name] = np.mean(postPred, axis=0)
allStdPred[outName][name] = np.std(postPred, axis=0)
# Add data to the dict
allMeanPred[outName]['Ref. data'] = obs
f.close()
# Plot barchart
for outName in ['velocity [m/s]', 'p']:
fig, ax = plt.subplots()
dict1 = {"Point ID": point_IDs[outName]}
dict2 = allMeanPred[outName]
right_order = ['Classical IC', 'Generalized IC', 'Pore Network',
'Ref. data']
reordered_dict2 = {k: dict2[k] for k in right_order}
std = {k: allStdPred[outName][k] for k in right_order[:-1]}
df = pd.DataFrame({**dict1, **reordered_dict2})
width = 0.4 if outName == 'p' else 0.8
df.plot(x="Point ID", y=right_order, kind="bar", ax=ax, width=width,
yerr=std, capsize=5, rot=0, edgecolor="black", lw=1, color=c_l)
if outName != "p":
ax.set_ylabel(outName)
else:
ax.set_ylabel("pressure [bar]")
# save the current figure
plotname = outName if outName == "p" else "velocity"
fig.savefig(
f"./{OutputDir}/{plotname}_barchart.svg", bbox_inches="tight"
)
fig.savefig(
f"./{OutputDir}/{plotname}_barchart.pdf", bbox_inches="tight"
)
plt.close()
return allMeanPred, allStdPred
modelNames = ['stokesdarcyBJ', 'stokesdarcyER', 'stokespnm']
inletLoc = 'top' # top or left
inclusion = 'squared' # squared or circular
path = "Results_09_01_2022_topInflow"
case = 'Valid'
allMeanPred, allStdPred = postPredictiveplot(modelNames, inclusion=inclusion,
inletLoc=inletLoc,
result_folder=path,
case='Valid')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment