Skip to content
Snippets Groups Projects
Commit 55328782 authored by Ivar Stefansson's avatar Ivar Stefansson
Browse files

Delete LineNorm.m

parent 876f6d3d
No related branches found
No related tags found
No related merge requests found
coarsefile = '../new_case_4/results/bernd_dfm_lefttoright.mat';
load(coarsefile);
%load 'coarse file.mat'
X = Points;
FRAC = true;
if FRAC
% i = 2; %fracture identity
Xp = fracxandp{i}; % The fracture information has here the format
endpoints=[Xp(1, 1:2); Xp(end, 1:2)];
% [x1(c) y1(c) p(c); x2(c) y2(c) p(c)] for cell c in position
% Xp(2*c-1:2*c, :), the coordinates being the vertices of the fracture.
end
%load geiger_permeable_reference.mat
load anna_reference_lefttoright.mat
% Both the "coarse" and "fine" input files are assumed to have a triangulation
% CELL t with one (number of vertices of the cell) x 1 pointer to the points
% x of each grid cell and vector p for pressure in each cell (length(p) ==
% length(t)). In case a fracture is being evaluated, the only coarse
% simulation information needed is fracxandp, a cell containing the
% pressure and coordinate information for each fracture.
% Capital Letters Indicate The Coarse Grid.
boundary_line = false;
%segment = [endpoints(1),endpoints(2,1)];
segment = [1, 1];
% assign two identical values for the whole cross-section of
% the domain. Assign x values for the endpoints of the desired segment
% unless the line is vertical, in which case the two y values should be
% provided.
% NOTE the segments are assumed to be chosen so that the cells end at the
% endpoints (fracture endpoints, in our case). If not, only the part of the
% line that is covered by coarse and fine cells lying in the interior of
% the segment is evaluated.
if endpoints(1)==endpoints(2)
a=endpoints(1);
b=0;
isvertical = true;
if segment(1) == segment(2)
fracture_length = abs(endpoints(3)-endpoints(4));
else
fracture_length = abs(segment(1)-segment(2));
end
else
a = (endpoints(2,2) - endpoints(1,2)) / (endpoints(2,1)-endpoints(1,1));
b = endpoints(1,2) - a*endpoints(1,1);
isvertical = false;
if segment(1) == segment(2)
fracture_length = hypot(abs(endpoints(1)-endpoints(2)), ...
abs(endpoints(3)-endpoints(4)));
else
fracture_length = hypot(abs(segment(1)-segment(2)), ...
abs(endpoints(3)-endpoints(4)));
end
end
[nw, vertices_on] = check_points(x,a,b,isvertical);
if ~FRAC
[Nw, Vertices_on] = check_points(X,a,b,isvertical);
end
%must unfortunately allow for cells with different number of vertices both
%for fine grid (Bernd uses both for the hydrocoin case, at least) and coarse.
% Therefore, cell_points_on is a CELL with nvertices(c) pointer extracted
%from t. c_p_nw_on is the corresponding logical nw cell.
[cell_points_on, p_on, c_p_nw_on, cell_vertices_on, vertices_p] = ...
extract_on_line(t,x,nw,vertices_on,p);
if ~FRAC
[Cell_points_on, P_on, C_p_nw_on, Cell_vertices_on, Vertices_p] = ...
extract_on_line(T,X,Nw,Vertices_on,P);
else
Cell_vertices_on = [];
Vertices_p = [];
end
if ~boundary_line && ~isempty(cell_vertices_on)
[cell_vertices_on, vertices_p] = combine_faces(cell_vertices_on, vertices_p,isvertical);
end
if ~boundary_line && ~isempty(Cell_vertices_on)
[Cell_vertices_on, Vertices_p] = combine_faces(Cell_vertices_on, Vertices_p,isvertical);
end
% find the points where the line intersects each of the fine and coarse
% cells, respectively. Format intersectionpoints(c) = [x1,y1,x2,y2] for the
% two points for cell c.
[intersectionpoints] = intersections_of_cells(endpoints, isvertical, ...
cell_points_on, c_p_nw_on);
if FRAC
n = length(Xp);
ind_two = linspace(2,n,n/2);
ind_one = ind_two-1;
Intersectionpoints = [Xp(ind_one,1:2), Xp(ind_two,1:2)];
P_on = Xp(ind_two,3);
else
[Intersectionpoints] = intersections_of_cells(endpoints, isvertical, ...
Cell_points_on, C_p_nw_on);
end
% Add the values for the faces coinciding with the line:
if ~isempty(cell_vertices_on)
intersectionpoints = [intersectionpoints;cell_vertices_on];
p_on = [p_on;vertices_p];
end
if ~isempty(Cell_vertices_on)
Intersectionpoints = [Intersectionpoints;Cell_vertices_on];
P_on = [P_on;Vertices_p];
end
% Loop through large cells, find smalls cells (partly) inside and evaluate
% norms
[E2] = evaluate_norm(Intersectionpoints, intersectionpoints, P_on, p_on, isvertical,segment);
dP2 = (max(p)-min(p))^2*fracture_length;
Erel = sqrt(E2)/sqrt(dP2)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment