Skip to content
Snippets Groups Projects
biomin.hh 21.5 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
 *   See the file COPYING for full copying permissions.                      *
 *                                                                           *
 *   This program is free software: you can redistribute it and/or modify    *
 *   it under the terms of the GNU General Public License as published by    *
 *   the Free Software Foundation, either version 2 of the License, or       *
 *   (at your option) any later version.                                     *
 *                                                                           *
 *   This program is distributed in the hope that it will be useful,         *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of          *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the            *
 *   GNU General Public License for more details.                            *
 *                                                                           *
 *   You should have received a copy of the GNU General Public License       *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.   *
 *****************************************************************************/
/*!
 * \file
 * \ingroup Fluidsystems
 * \brief A fluid system with water and gas as phases and brine and CO2
 *        as components.
 */
#ifndef DUMUX_BIOMIN_FLUID_SYSTEM_HH
#define DUMUX_BIOMIN_FLUID_SYSTEM_HH

#include <dumux/common/parameters.hh>
#include <dumux/material/idealgas.hh>
#include <dumux/material/fluidsystems/base.hh>

#include <dumux/material/components/brine.hh>
#include <dumux/material/components/h2o.hh>
#include <dumux/material/components/co2.hh>
#include <dumux/material/components/tabulatedcomponent.hh>

#include <dumux/material/components/calciumion.hh>
#include "../components/urea.hh"

#include <dumux/material/binarycoefficients/brine_co2.hh>

namespace Dumux {
namespace FluidSystems {

/*!
 * \ingroup Fluidsystems
 * \brief A compositional fluid with brine and carbon dioxide as
 *        components in both, the liquid and the gas (supercritical) phase,
 *        additional biomineralisation components (Ca and Urea) in the liquid phase
 *
 * This class provides acess to the Bio fluid system when no property system is used.
 * For Dumux users, using BioMinFluid<TypeTag> and the documentation therein is
 * recommended.
 *
 *  The user can provide their own material table for co2 properties.
 *  This fluidsystem is initialized as default with the tabulated version of
 *  water of the IAPWS-formulation, and the tabularized adapter to transfer
 *  this into brine.
 *  In the non-TypeTagged version, salinity information has to be provided with
 *  the init() methods.
 */
template <class Scalar,
          class CO2Table,
          class H2OType = Dumux::Components::TabulatedComponent<Dumux::Components::H2O<Scalar>> >
class BioMin
: public Base<Scalar, BioMin<Scalar, CO2Table, H2OType> >
{

    using ThisType = BioMin<Scalar, H2OType>;
    using Base = Dumux::FluidSystems::Base<Scalar, ThisType>;
    using Brine_CO2 = BinaryCoeff::Brine_CO2<Scalar, CO2Table>;

    using IdealGas = Dumux::IdealGas<Scalar>;

public:
    using CO2 = Components::CO2<Scalar, CO2Table>;
    using H2O = H2OType;
    using Ca = Components::CalciumIon<Scalar>;
    using Urea = Components::Urea<Scalar>;
    using Brine = Components::Brine<Scalar, H2O>;

    // the type of parameter cache objects. this fluid system does not
    // cache anything, so it uses Dumux::NullParameterCache
    using ParameterCache = Dumux::NullParameterCache;

    /****************************************
     * Fluid phase related static parameters
     ****************************************/
    static constexpr int numPhases = 2; // liquid and gas phases
    static constexpr int liquidPhaseIdx = 0; // index of the liquid phase
    static constexpr int gasPhaseIdx = 1; // index of the gas phase

    static constexpr int phase0Idx = liquidPhaseIdx; // index of the first phase
    static constexpr int phase1Idx = gasPhaseIdx; // index of the second phase
    /*!
     * \brief Return the human readable name of a fluid phase
     *
     * \param phaseIdx The index of the fluid phase to consider
     */
    static std::string phaseName(int phaseIdx)
    {
        static std::string name[] =
        {
            "liquid",
            "gas"
        };

        assert(0 <= phaseIdx && phaseIdx < numPhases);
        return name[phaseIdx];
    }

    /*!
     * \brief Returns whether the fluids are miscible
     */
    static constexpr bool isMiscible()
    { return true; }

    /*!
     * \brief Return whether a phase is liquid
     *
     * \param phaseIdx The index of the fluid phase to consider
     */
    static constexpr bool isLiquid(int phaseIdx)
    {
        assert(0 <= phaseIdx && phaseIdx < numPhases);
        return phaseIdx != gasPhaseIdx;
    }

    /*!
     * \brief Returns true if and only if a fluid phase is assumed to
     *        be an ideal mixture.
     *
     * We define an ideal mixture as a fluid phase where the fugacity
     * coefficients of all components times the pressure of the phase
     * are independent on the fluid composition. This assumption is true
     * if Henry's law and Raoult's law apply. If you are unsure what
     * this function should return, it is safe to return false. The
     * only damage done will be (slightly) increased computation times
     * in some cases.
     *
     * \param phaseIdx The index of the fluid phase to consider
     */
    static constexpr bool isIdealMixture(int phaseIdx)
    {
        assert(0 <= phaseIdx && phaseIdx < numPhases);
        return true;
    }

    /*!
     * \brief Returns true if and only if a fluid phase is assumed to
     *        be compressible.
     *
     * Compressible means that the partial derivative of the density
     * to the fluid pressure is always larger than zero.
     *
     * \param phaseIdx The index of the fluid phase to consider
     */
    static constexpr bool isCompressible(int phaseIdx)
    {
        assert(0 <= phaseIdx && phaseIdx < numPhases);
        return true;
    }

    /*!
     * \brief Returns true if and only if a fluid phase is assumed to
     *        be an ideal gas.
     *
     * \param phaseIdx The index of the fluid phase to consider
     */
    static bool isIdealGas(int phaseIdx)
    {
        assert(0 <= phaseIdx && phaseIdx < numPhases);

        // let the fluids decide
        if (phaseIdx == gasPhaseIdx)
            return H2O::gasIsIdeal() && CO2::gasIsIdeal();
        return false; // not a gas
    }

    /****************************************
     * Component related static parameters
     ****************************************/
    static constexpr int numComponents = 4; // H2O/brine, CO2, Ca, urea
    static constexpr int H2OIdx = 0;
    static constexpr int CO2Idx = 1;
    static constexpr int CaIdx = 2;
    static constexpr int UreaIdx = 3;

    static constexpr int BrineIdx = H2OIdx;
    static constexpr int comp0Idx = BrineIdx;
    static constexpr int comp1Idx = CO2Idx;

    /*!
     * \brief Return the human readable name of a component
     *
     * \param compIdx The index of the component to consider
     */
    static std::string componentName(int compIdx)
    {
        switch (compIdx) {
        case BrineIdx: return Brine::name();
        case CO2Idx: return "CO2";
        case CaIdx: return Ca::name();
        case UreaIdx: return Urea::name();
        default: DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx);
        };
    }

    /*!
     * \brief Return the molar mass of a component in \f$\mathrm{[kg/mol]}\f$.
     *
     * \param compIdx The index of the component to consider
     */
    static Scalar molarMass(int compIdx)
    {
        switch (compIdx) {
        case H2OIdx: return H2O::molarMass();
        // actually, the molar mass of brine is only needed for diffusion
        // but since solutes are accounted for seperately
        // only the molar mass of water is returned.
        case CO2Idx: return CO2::molarMass();
        case CaIdx: return Ca::molarMass();
        case UreaIdx: return Urea::molarMass();
        default: DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx);
        };
    }

    /****************************************
     * thermodynamic relations
     ****************************************/

    static void init()
    {
        init(/*startTemp=*/295.15, /*endTemp=*/305.15, /*tempSteps=*/10,
             /*startPressure=*/1e4, /*endPressure=*/1e6, /*pressureSteps=*/200);

    }

    static void init(Scalar startTemp, Scalar endTemp, int tempSteps,
                     Scalar startPressure, Scalar endPressure, int pressureSteps)
    {
        std::cout << "Initializing tables for the pure-water properties.\n";
        H2O::init(startTemp, endTemp, tempSteps,
                  startPressure, endPressure, pressureSteps);
    }

    /*!
     * \brief Given a phase's composition, temperature, pressure, and
     *        the partial pressures of all components, return its
     *        density \f$\mathrm{[kg/m^3]}\f$.
     *
     * \param fluidState The fluid state
     * \param phaseIdx The index of the phase
     */
    template <class FluidState>
    static Scalar density(const FluidState &fluidState,
                          const ParameterCache &paramCache,
                          int phaseIdx)
    {
        assert(0 <= phaseIdx && phaseIdx < numPhases);

        Scalar temperature = fluidState.temperature(phaseIdx);
        Scalar pressure = fluidState.pressure(phaseIdx);

        switch (phaseIdx) {
            // assume pure brine for the liquid phase.
            case liquidPhaseIdx:
                return liquidDensity_(temperature,
                                      pressure,
                                      fluidState.moleFraction(liquidPhaseIdx, CO2Idx),
                                      fluidState.moleFraction(liquidPhaseIdx, H2OIdx),
                                      fluidState.massFraction(liquidPhaseIdx, CaIdx)); //consider density effect of dissolved calcium

            // assume pure CO2 for the gas phase.
            case gasPhaseIdx:
                return CO2::gasDensity(temperature, pressure);

            default:
                DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx); break;
        }
    }

    /*!
     * \brief The molar density \f$\rho_{mol,\alpha}\f$
     *   of a fluid phase \f$\alpha\f$ in \f$\mathrm{[mol/m^3]}\f$
     *
     * The molar density is defined by the
     * mass density \f$\rho_\alpha\f$ and the mean molar mass \f$\overline M_\alpha\f$:
     *
     * \f[\rho_{mol,\alpha} = \frac{\rho_\alpha}{\overline M_\alpha} \;.\f]
     */
    template <class FluidState>
    static Scalar molarDensity(const FluidState &fluidState,
                               const ParameterCache &paramCache,
                               int phaseIdx)
    {
        const Scalar temperature = fluidState.temperature(phaseIdx);
        const Scalar pressure = fluidState.pressure(phaseIdx);
        if (phaseIdx == liquidPhaseIdx)
        {
            return density(fluidState, paramCache, phaseIdx)
                   / fluidState.averageMolarMass(phaseIdx);
        }
        else if (phaseIdx == gasPhaseIdx)
        {
            // for the gas phase assume an ideal gas
            return CO2::gasMolarDensity(temperature, pressure);
        }
        else
            DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
    }

    /*!
     * \brief The dynamic viscosity \f$\mathrm{[Pa*s]}\f$.
     *
     * \param temperature temperature of component in \f$\mathrm{[K]}\f$
     * \param pressure pressure of component in \f$\mathrm{[Pa]}\f$
     *
     * Equation given in: - Batzle & Wang (1992)
     *                    - cited by: Bachu & Adams (2002)
     *                    "Equations of State for basin geofluids"
     */
    template <class FluidState>
    static Scalar viscosity(const FluidState &fluidState,
                            const ParameterCache &paramCache,
                            int phaseIdx)
    {
        assert(0 <= phaseIdx && phaseIdx < numPhases);

        Scalar temperature = fluidState.temperature(phaseIdx);
        Scalar pressure = fluidState.pressure(phaseIdx);

        if (phaseIdx == liquidPhaseIdx)
        {
            // assume brine with viscosity effect of Ca for the liquid phase.
            Scalar result = Brine::liquidViscosity(temperature, pressure);

            Valgrind::CheckDefined(result);
            return result;
        }
        else if (phaseIdx == gasPhaseIdx)
        {
            // assume pure CO2 for the gas phase.
            Scalar result = CO2::gasViscosity(temperature, pressure);
            Valgrind::CheckDefined(result);
            return result;
        }
        else
            DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);

    }

    /*!
     * \brief Returns the fugacity coefficient [Pa] of a component in a
     *        phase.
     *
     * The fugacity coefficient \f$\phi^\kappa_\alpha\f$ of a
     * component \f$\kappa\f$ for a fluid phase \f$\alpha\f$ defines
     * the fugacity \f$f^\kappa_\alpha\f$ by the equation
     *
     * \f[
     f^\kappa_\alpha := \phi^\kappa_\alpha x^\kappa_\alpha p_\alpha\;.
     \f]
     *
     * The fugacity itself is just an other way to express the
     * chemical potential \f$\zeta^\kappa_\alpha\f$ of the component:
     *
     * \f[
     f^\kappa_\alpha := \exp\left\{\frac{\zeta^\kappa_\alpha}{k_B T_\alpha} \right\}
     \f]
     * where \f$k_B\f$ is Boltzmann's constant.
     */
    template <class FluidState>
    static Scalar fugacityCoefficient(const FluidState &fluidState,
                                      const ParameterCache &paramCache,
                                      int phaseIdx,
                                      int compIdx)
    {
        assert(0 <= phaseIdx && phaseIdx < numPhases);
        assert(0 <= compIdx && compIdx < numComponents);

        if (phaseIdx == gasPhaseIdx)
            // use the fugacity coefficients of an ideal gas. the
            // actual value of the fugacity is not relevant, as long
            // as the relative fluid compositions are observed,
            return 1.0;

        Scalar temperature = fluidState.temperature(phaseIdx);
        Scalar pressure = fluidState.pressure(phaseIdx);
        Scalar salinity = Brine::salinity(); // 0.1; //TODO major assumption in favor of runtime!
        //function is actually designed for use with NaCl not Ca.
        //Theoretically it should be: fluidState.massFraction(liquidPhaseIdx, CaIdx);

        assert(temperature > 0);
        assert(pressure > 0);
        // calulate the equilibrium composition for the given
        // temperature and pressure.
        Scalar xwH2O, xnH2O;
        Scalar xwCO2, xnCO2;
        Brine_CO2::calculateMoleFractions(temperature,
                                          pressure,
                                          salinity,
                                          /*knowgasPhaseIdx=*/-1,
                                          xwCO2,
                                          xnH2O);

        // normalize the phase compositions
        using std::min;
        using std::max;
        xwCO2 = max(0.0, min(1.0, xwCO2));
        xnH2O = max(0.0, min(1.0, xnH2O));

        xwH2O = 1.0 - xwCO2;
        xnCO2 = 1.0 - xnH2O;

        if (compIdx == BrineIdx)
        {
            Scalar phigH2O = 1.0;
            return phigH2O * xnH2O / xwH2O;
        }
        if (compIdx == CO2Idx)
        {
            Scalar phigCO2 = 1.0;
            return phigCO2 * xnCO2 / xwCO2;
        }
        else
            return 1/pressure; //all other components stay in the liquid phase
    }

    /*!
     * \brief Given the phase compositions, return the binary
     *        diffusion coefficient \f$\mathrm{[m^2/s]}\f$ of two components in a phase.
     * \param fluidState An arbitrary fluid state
     * \param phaseIdx The index of the fluid phase to consider
     * \param compIIdx Index of the component i
     * \param compJIdx Index of the component j
     */
    template <class FluidState>
    static Scalar binaryDiffusionCoefficient(const FluidState &fluidState,
                                             const ParameterCache &paramCache,
                                             int phaseIdx,
                                             int compIIdx,
                                             int compJIdx)
    {
        assert(0 <= phaseIdx && phaseIdx < numPhases);
        assert(0 <= compIIdx && compIIdx < numComponents);
        assert(0 <= compJIdx && compJIdx < numComponents);

        Scalar temperature = fluidState.temperature(phaseIdx);
        Scalar pressure = fluidState.pressure(phaseIdx);

        if (phaseIdx == liquidPhaseIdx)
        {
            assert(compIIdx == H2OIdx);
            Scalar result = 0.0;
            if(compJIdx == CO2Idx)
                result = Brine_CO2::liquidDiffCoeff(temperature, pressure);

            else if (compJIdx < numComponents) //Calcium and urea
                result = 1.587e-9;  //[m²/s]  educated guess, value for NaCl from J. Phys. D: Appl. Phys. 40 (2007) 2769-2776
            else
                DUNE_THROW(Dune::NotImplemented, "Binary difussion coefficient : Incorrect compIdx");

            Valgrind::CheckDefined(result);
            return result;
        }
        else
        {
            assert(phaseIdx == gasPhaseIdx);
            assert(compIIdx == CO2Idx);
            Scalar result = 0.0;
            if(compJIdx == H2OIdx)
                result = Brine_CO2::gasDiffCoeff(temperature, pressure);

            else if (compJIdx <numComponents) //Calcium and urea will stay in brine, no gaseous calcium or urea!
                result = 0.0;
            else
                DUNE_THROW(Dune::NotImplemented, "Binary difussion coefficient : Incorrect compIdx");

            Valgrind::CheckDefined(result);
            return result;
        }
    };

    /*!
     * \brief Given a phase's composition, temperature and pressure,
     *        return its specific enthalpy \f$\mathrm{[J/kg]}\f$.
     * \param fluidState An arbitrary fluid state
     * \param phaseIdx The index of the fluid phase to consider
     *
     * See:
     * Class 2001:
     * Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in NAPL-kontaminierten porösen Medien
     * Chapter 2.1.13 Innere Energie, Wäremekapazität, Enthalpie \cite A3:class:2001 <BR>
     *
     * Formula (2.42):
     * the specific enthalpy of a gasphase result from the sum of (enthalpies*mass fraction) of the components
     *
     */
    template <class FluidState>
    static Scalar enthalpy(const FluidState &fluidState,
                           const ParameterCache &paramCache,
                           int phaseIdx)
    {
        assert(0 <= phaseIdx && phaseIdx < numPhases);

        Scalar temperature = fluidState.temperature(phaseIdx);
        Scalar pressure = fluidState.pressure(phaseIdx);

        if (phaseIdx == liquidPhaseIdx)
        {
            // assume pure brine for the liquid phase.
            return Brine::liquidEnthalpy(temperature, pressure);
        }
        else
        {
            // assume pure CO2 for the gas phase.
            return CO2::gasEnthalpy(temperature, pressure);
        }
    };

private:
    //! calculate liquid density with respect to Water, CO2 and salt
    static Scalar liquidDensity_(Scalar T,
                                 Scalar pl,
                                 Scalar xwCO2,
                                 Scalar xwH2O,
                                 Scalar XlSal)
    {
        Valgrind::CheckDefined(T);
        Valgrind::CheckDefined(pl);
        Valgrind::CheckDefined(XlSal);
        Valgrind::CheckDefined(xwCO2);

        if(T < 273.15)
        {
            DUNE_THROW(NumericalProblem,
                       "Liquid density for Brine and CO2 is only "
                       "defined above 273.15K (is" << T << ")");
        }
        if(pl >= 2.5e8)
        {
            DUNE_THROW(NumericalProblem,
                       "Liquid density for Brine and CO2 is only "
                       "defined below 250MPa (is" << pl << ")");
        }

        Scalar rho_brine = Brine::liquidDensity(T, pl);
        Scalar rho_pure = H2O::liquidDensity(T, pl);
        Scalar rho_lCO2 = liquidDensityWaterCO2_(T, pl, xwH2O, xwCO2);
        Scalar contribCO2 = rho_lCO2 - rho_pure;
        return rho_brine + contribCO2;
    }

    //! calculate liquid Density of water and CO2
    static Scalar liquidDensityWaterCO2_(Scalar temperature,
                                         Scalar pl,
                                         Scalar xwH2O,
                                         Scalar xwCO2)
    {
        const Scalar M_CO2 = CO2::molarMass();
        const Scalar M_H2O = H2O::molarMass();

        const Scalar tempC = temperature - 273.15;        /* tempC : temperature in °C */
        const Scalar rho_pure = H2O::liquidDensity(temperature, pl);
        xwH2O = 1.0 - xwCO2; // xwH2O is available, but in case of a pure gas phase
                             // the value of M_T for the virtual liquid phase can become very large
        const Scalar M_T = M_H2O * xwH2O + M_CO2 * xwCO2;
        const Scalar V_phi =
            (37.51 +
             tempC*(-9.585e-2 +
                    tempC*(8.74e-4 -
                           tempC*5.044e-7))) / 1.0e6;
        return 1 / (xwCO2 * V_phi/M_T + M_H2O * xwH2O / (rho_pure * M_T));
    }

};

} // end namespace FluidSystems
} // end namespace Dumux

#endif