Newer
Older
---
title: Introduction to DuMu^x^
subtitle: Overview and Available Models
---
# Table of Contents
## Table of Contents
1. [History and Structure](#structure-and-development-history)
2. [Available Models](#available-models)
3. [Spatial Discretization](#spatial-discretization)
4. [Model Components](#model-components)
5. [Simulation Flow](#simulation-flow)
## DuMu^x^ is a DUNE module
<img src="img/dumux_dune_module.png"/>
## The DUNE Framework
* **Developed** by scientists at around 10 European research institutions.
* **Separation** of data structures and algorithms by abstract interfaces.
* Efficient implementation using **generic** programming techniques.
* **Reuse** of existing FE packages with a large body of functionality.
* Current stable release: **2.9** (November 2022).
## DUNE Core Modules
* **dune-common:** basic classes
* **dune-geometry:** geometric entities
* **dune-grid:** abstract grid/mesh interface
* **dune-istl:** iterative solver template library
* **dune-localfunctions:** finite element shape functions
## Overview
<img src="img/dumux.png" width="400"/>
* **DuMu^x^:** DUNE for Multi-{Phase, Component, Scale, Physics, $\text{...}$} flow and transport in porous media.
* **Goal:** **sustainable, consistent, research-friendly framework** for the implementation and application of
**FV discretization schemes**, **model concepts**, and **constitutive relations**.
* **Developed** by more than 30 PhD students and post docs, mostly at LH^2^ (Uni Stuttgart).
* **Successfully applied** to
* gas (CO~2~, H~2~, CH~4~, ...) storage scenarios
* environmental remediation problems
* subsurface-atmosphere coupling (Navier-Stokes / Darcy)
* flow and transport in fractured porous media
* root-soil interaction
* pore-network modelling
* developing new finite volume schemes
* [**dumux-lecture**](https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-lecture): example applications for lectures offered by LH2, Uni Stuttgart
* [**dumux-pub/---**](https://git.iws.uni-stuttgart.de/dumux-pub): code and data accompanying a publication (reproduce and archive results)
* [**dumux-appl/---**](https://git.iws.uni-stuttgart.de/dumux-appl): Various application modules (many not publicly available, e.g. ongoing research)
* 01/2007: Development **starts**.
* 07/2009: Release **1.0**.
* 09/2010: **Split** into stable and development part.
* 12/2010: Anonymous **read access** to the **SVN** trunk of the stable part.
* 02/2011: Release **2.0,** ..., 10/2017: Release **2.12**.
* 09/2015: Transition from Subversion to **Git**.
* 12/2018: Release **3.0,** ..., 03/2023: Release **3.7**.
## Funding
Efforts mainly funded through ressources at the LH^2^: [Department of Hydromechanics and Modelling of Hydrosystems at the University of Stuttgart](https://www.iws.uni-stuttgart.de/en/lh2/)
and third-party funding aquired at the LH^2^
<img src="img/lh2.jpeg" width="300"/>
## Funding
We acknowledge funding that supported the development of DuMu^x^ from
<img src="img/funding.svg" width="550"/>
* More than 1000 unique release **downloads**.
* More than 200 peer-reviewed **publications** and PhD theses using DuMu^x^
<img src="img/files_vs_releases.png" width="600"/>
<img src="img/lines_vs_releases.png" width="600"/>
## Mailing Lists and GitLab
* **Mailing lists** of DUNE (<dune@dune-project.org>) and DuMu^x^ (<dumux@listserv.uni-stuttgart.de>)
* GitLab **Issue Tracker** (<https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/issues>)
* Get **GitLab** accounts (non-anonymous) for better access
* DUNE GitLab (<https://gitlab.dune-project.org/core>)
* DuMu^x^ GitLab (<https://git.iws.uni-stuttgart.de/dumux-repositories/dumux>)
## Documentation
* Code **documentation**
* DuMu^x^ (<https://dumux.org/docs/doxygen/master/>)
* DuMu^x^ **Handbook** (<https://dumux.org/docs/#handbook>)
* DuMu^x^ **Examples** (<https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/-/tree/master/examples#examples>)
* DuMu^x^ **Website** (<https://dumux.org/>)
## Mathematical Models
* **Porous medium flow (Darcy)**: Single and multi-phase models for flow and transport in porous materials.
* **Free flow (Navier-Stokes)**: Single-phase models based on the Navier-Stokes equation.
* **Shallow water flow**: Two-dimensional shallow water flow (depth-averaged).
* **Geomechanics**: Models taking into account solid deformation.
* **Pore network**: Single and multi-phase models for flow and transport in pore networks.
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
## Available Models
<img src="img/models.png" width="650"/>
## Darcy's law
* Describes the advective flux in porous media on the macro-scale
* One-phase flow
$v = - \frac{\mathbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \mathbf{g} \right)$
* Multi-phase flow (phase $\alpha$)
$v_\alpha = - \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right)$
## 1p -- single-phase
* Uses standard Darcy approach for the conservation of momentum
* Mass continuity equation
$\phi \frac{\partial \varrho}{\partial t} + \text{div} \left\lbrace - \varrho \frac{\textbf{K}}{\mu} \left(\textbf{grad}\, p - \varrho \textbf{g} \right) \right\rbrace = q$
* Primary variable: $p$
## 1pnc -- single-phase, multi-component
* Uses standard Darcy approach for the conservation of momentum
* Transport of component $\kappa \in \{w, a, ...\}$
$\phi \frac{\partial \varrho X^\kappa}{\partial t} - \text{div} \left\lbrace \varrho X^\kappa \frac{\textbf {K}}{\mu} \left(\textbf{grad}\, p - \varrho \textbf{g} \right) + \varrho D^\kappa_\text{pm} \textbf{grad} X^\kappa \right\rbrace = q$
* Primary variables: $p$ and $x^\kappa$
## 1pncmin -- with mineralization
* Transport equation for each component $\kappa \in \{w, a, ...\}$
$\frac{\partial \left( \varrho_f X^\kappa \phi \right)}{\partial t}$
$- \text{div} \left\lbrace \varrho_f X^\kappa \frac{k_{r}}{\mu} \mathbf{K} \left(\textbf{grad}\, p - \varrho_f \mathbf{g} \right) \right\rbrace$
$- \text{div} \left\lbrace \mathbf{D_{pm}^\kappa} \varrho_f \textbf{grad}\, X^\kappa \right\rbrace = q_\kappa$
* Mass balance solid or mineral phases
$\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda$
* Primary variables: $p$, $x^k$ and $\phi_\lambda$
## 2p -- two-phase
* Uses standard multi-phase Darcy approach for the conservation of momentum
* Conservation of the phase mass of phase $\alpha \in \{w, n\}$
$\phi \frac{\partial \varrho_\alpha S_\alpha}{\partial t} - \text{div} \left\{\varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\} = q_\alpha$
* Constitutive relation $p_c = p_n - p_w$
* $S_w + S_n = 1$
* Primary variables: $p_w$ and $S_n$ or $p_n$ and $S_w$
## 2pnc
* Transport equation for each component $\kappa \in \{w, n, ...\}$ in phase $\alpha \in \{w, n\}$
$\frac{\partial \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha}{\partial t} - \sum_\alpha \text{div} \left\lbrace \varrho_\alpha X_\alpha^\kappa \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left( \textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace$
$- \sum_\alpha \text{div} \left\lbrace \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right\rbrace = \sum_\alpha q_\alpha^\kappa$
* Constitutive relation $p_c = p_n - p_w$
* $S_w + S_n = 1$ and $X^\kappa_w + X^\kappa_n = 1$
* Primary variables: depend on the phase state
## 2pncmin
* Transport equation for each component $\kappa \in \{w, n, ...\}$ in phase $\alpha \in \{w, n\}$
$\frac{\partial \sum_\alpha \varrho_\alpha X_\alpha^\kappa \phi S_\alpha}{\partial t} - \sum_\alpha \text{div} \left\lbrace \varrho_\alpha X_\alpha^\kappa \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left( \textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace$
$- \sum_\alpha \text{div} \left\lbrace \mathbf{D_{\alpha, pm}^\kappa} \varrho_\alpha \textbf{grad}\, X^\kappa_\alpha \right\rbrace = \sum_\alpha q_\alpha^\kappa$
* Mass balance solid or mineral phases
$\frac{\partial \left(\varrho_\lambda \phi_\lambda \right)}{\partial t} = q_\lambda$
* $p_c = p_n - p_w$, $S_w + S_n = 1$ and $X^\kappa_w + X^\kappa_n = 1$
* Primary variables: depend on the phase state
## 3p -- three-phase
* Uses standard multi-phase Darcy approach for the conservation of momentum
* Conservation of the phase mass of phase $\alpha \in \{w, g, n\}$
$\phi \frac{\partial \varrho_\alpha S_\alpha}{\partial t} - \text{div} \left\lbrace \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace = q_\alpha$
* $S_w + S_n + S_g = 1$
* Primary variables: $p_g$, $S_w$ and $S_n$
## 3p3c
* Transport equation for each component $\kappa \in \{w, a, c\}$ in phase $\alpha \in \{w, g, n\}$
$\phi \frac{\partial \left(\sum_\alpha \varrho_{\alpha,mol} x_\alpha^\kappa S_\alpha \right)}{\partial t}$
$- \sum_\alpha \text{div} \left\lbrace \frac{k_{r\alpha}}{\mu_\alpha} \varrho_{\alpha,mol} x_\alpha^\kappa \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_{\alpha,mass} \mathbf{g} \right) \right\rbrace$
$- \sum_\alpha \text{div} \left\lbrace D_\text{pm}^\kappa \frac{1}{M_\kappa} \varrho_\alpha \textbf{grad} X^\kappa_{\alpha} \right\rbrace = q^\kappa$
* $S_w + S_n + S_g = 1$ and $x^w_\alpha + x^a_\alpha + x^c_\alpha = 1$
* Primary variables: depend on the locally present fluid phases
## Non-Isothermal
* Local thermal equilibrium is assumed
* One energy conservation equation for the porous solid matrix and the fluids
$\phi \frac{\partial \sum_\alpha \varrho_\alpha u_\alpha S_\alpha}{\partial t} + \left(1 - \phi \right) \frac{\partial \left(\varrho_s c_s T \right)}{\partial t}$
$- \sum_\alpha \text{div} \left\lbrace \varrho_\alpha h_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_\alpha \mathbf{g} \right) \right\rbrace$
$- \text{div} \left(\lambda_{pm} \textbf{grad}\, T \right) = q^h$
* $u_\alpha = h_\alpha - p_\alpha / \varrho_\alpha$
## Reynolds-Averaged Navier-Stokes (RANS)
* Momentum balance equation for a single-phase, isothermal RANS model
$\frac{\partial \left(\varrho \textbf{v} \right)}{\partial t} + \nabla \cdot \left(\varrho \textbf{v} \textbf{v}^{\text{T}} \right) = \nabla \cdot \left(\mu_\textrm{eff} \left(\nabla \textbf{v} + \nabla \textbf{v}^{\text{T}} \right) \right)$
$- \nabla p + \varrho \textbf{g} - \textbf{f}$
* The effective viscosity is composed of the fluid and the eddy viscosity
$\mu_\textrm{eff} = \mu + \mu_\textrm{t}$
# Spatial Discretization
## Cell Centered Finite Volume Methods
* Use elements of the grid as control volumes
* Discrete **values** are determined at the element/control volume **center**
* **Two-point flux approximation (TPFA)**
* Simple but robust
* **Multi-point flux approximation (MPFA)**
* A consistent discrete gradient is constructed
## Two-Point Flux Approximation (TPFA)
<img src="img/tpfa.png" width="75%"/>
## Multi-Point Flux Approximation (MPFA)
<img src="img/mpfa.png" width="80%"/>
## Box method
* Model domain is discretized using a **FE** mesh
* Secondary **FV** mesh is constructed → control volume/**box**
* Control volumes are partitioned into sub-control volumes (scvs)
* Faces of control volumes are partitioned into sub-control volume faces (scvfs)
* Unites advantages of finite-volume and finite-element methods
* **Unstructured grids** (from FE method)
* **Mass conservative** (from FV method)
## Box method
<img src="img/box.png"/>
## Staggered Grid
* Uses a finite volume method with different control volumes for different equations
* Fluxes are evaluated with a two-point flux approximation
* **Robust** and **mass conservative**
* Should be applied for **structured grids** only
## Staggered Grid
<img src="img/staggered_grid.png"/>
# Model Components
## Model Components
* The following components have to be specified
* **Solver**: Type of solution stategy
* **Assembler**: Key properties
* Geometry, Variables, LocalResidual
* **LinearSolver**: How to solve algebraic equations
* **Problem**: Initial and boundary conditions
* **SolutionVector**: Container to store the solution
* **TimeLoop**: For time-dependent problems
* **IOFields** and **VtkOutputModule**: Output of the simulation
# Simulation Flow
## Simulation Flow
<img src="img/simulation_flow.png"/>