Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
diff -ruN exercises/exercise-mainfile/1pproblem.hh exercises/solution/exercise-mainfile/1pproblem.hh
--- exercises/exercise-mainfile/1pproblem.hh 2023-06-01 14:31:33.153063018 +0200
+++ exercises/solution/exercise-mainfile/1pproblem.hh 2023-04-26 14:37:49.797150837 +0200
@@ -24,9 +24,9 @@
#ifndef DUMUX_EX_MAINFILE_ONEP_TEST_PROBLEM_HH
#define DUMUX_EX_MAINFILE_ONEP_TEST_PROBLEM_HH
+#include <dumux/porousmediumflow/problem.hh>
#include <dumux/common/properties.hh>
#include <dumux/common/boundarytypes.hh>
-#include <dumux/porousmediumflow/problem.hh>
namespace Dumux {
@@ -55,7 +55,7 @@
OnePTestProblem(std::shared_ptr<const GridGeometry> gridGeometry)
: ParentType(gridGeometry)
{
- FluidSystem::Component::init(/*tempMin=*/273.15,
+ FluidSystem::Component::init(/*tempMin=*/272.15,
/*tempMax=*/294.15,
/*numTemp=*/10,
/*pMin=*/1.0e4,
@@ -104,7 +104,6 @@
{
return PrimaryVariables(1.0e5);
}
-
};
} // end namespace Dumux
diff -ruN exercises/exercise-mainfile/CMakeLists.txt exercises/solution/exercise-mainfile/CMakeLists.txt
--- exercises/exercise-mainfile/CMakeLists.txt 2023-06-01 14:31:33.153063018 +0200
+++ exercises/solution/exercise-mainfile/CMakeLists.txt 2023-04-26 14:37:49.797150837 +0200
@@ -1,12 +1,9 @@
# the one-phase simulation program
-dumux_add_test(NAME exercise_mainfile_a
- SOURCES exercise1pamain.cc)
+dumux_add_test(NAME exercise_mainfile_a_solution
+ SOURCES exercise1pa_solution_main.cc
+ COMPILE_DEFINITIONS TYPETAG=OnePIncompressible)
-dumux_add_test(NAME exercise_mainfile_b
- SOURCES exercise1pbmain.cc)
-
-dumux_add_test(NAME exercise_mainfile_c
- SOURCES exercise1pcmain.cc)
+# here, add the two-phase non-isothermal simulation program
# add a symlink for each input file
add_input_file_links()
diff -ruN exercises/exercise-mainfile/exercise1pamain.cc exercises/solution/exercise-mainfile/exercise1pamain.cc
--- exercises/exercise-mainfile/exercise1pamain.cc 2023-06-01 14:31:33.153063018 +0200
+++ exercises/solution/exercise-mainfile/exercise1pamain.cc 1970-01-01 01:00:00.000000000 +0100
@@ -1,142 +0,0 @@
-// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
-// vi: set et ts=4 sw=4 sts=4:
-/*****************************************************************************
- * See the file COPYING for full copying permissions. *
- * *
- * This program is free software: you can redistribute it and/or modify *
- * it under the terms of the GNU General Public License as published by *
- * the Free Software Foundation, either version 3 of the License, or *
- * (at your option) any later version. *
- * *
- * This program is distributed in the hope that it will be useful, *
- * but WITHOUT ANY WARRANTY; without even the implied warranty of *
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
- * GNU General Public License for more details. *
- * *
- * You should have received a copy of the GNU General Public License *
- * along with this program. If not, see <http://www.gnu.org/licenses/>. *
- *****************************************************************************/
-/*!
- * \file
- *
- * \brief test for the one-phase CC model
- */
-#include <config.h>
-
-#include "properties.hh"
-
-#include <iostream>
-
-#include <dune/common/timer.hh>
-
-#include <dumux/common/initialize.hh>
-#include <dumux/common/properties.hh>
-#include <dumux/common/parameters.hh>
-
-#include <dumux/linear/istlsolvers.hh>
-#include <dumux/linear/linearalgebratraits.hh>
-#include <dumux/linear/linearsolvertraits.hh>
-
-#include <dumux/assembly/fvassembler.hh>
-
-#include <dumux/io/vtkoutputmodule.hh>
-#include <dumux/io/grid/gridmanager_yasp.hh>
-
-int main(int argc, char** argv)
-{
- using namespace Dumux;
-
- // define the type tag for this problem
- using TypeTag = Properties::TTag::OnePIncompressible;
-
- ////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////
-
- // initialize MPI+x, finalize is done automatically on exit
- Dumux::initialize(argc, argv);
-
- // initialize parameter tree
- Parameters::init(argc, argv);
-
- //////////////////////////////////////////////////////////////////////
- // try to create a grid (from the given grid file or the input file)
- /////////////////////////////////////////////////////////////////////
-
- GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
- gridManager.init();
-
- ////////////////////////////////////////////////////////////
- // run stationary linear problem on this grid
- ////////////////////////////////////////////////////////////
-
- // we compute on the leaf grid view
- const auto& leafGridView = gridManager.grid().leafGridView();
-
- // create the finite volume grid geometry
- using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
- auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
-
- // the problem (initial and boundary conditions)
- using Problem = GetPropType<TypeTag, Properties::Problem>;
- auto problem = std::make_shared<Problem>(gridGeometry);
-
- // the solution vector
- using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
- SolutionVector x(gridGeometry->numDofs());
-
- // the grid variables
- using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
- auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
- gridVariables->init(x);
-
- // initialize the vtk output module
- VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
- using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
- vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
- using IOFields = GetPropType<TypeTag, Properties::IOFields>;
- IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
- vtkWriter.write(0.0);
-
- Dune::Timer timer;
-
- // TODO: dumux-course-task 3
- // Change the differentiation method to analytic by changing from DiffMethod::numeric to DiffMethod::analytic
-
- // the assembler for stationary problems
- using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
- auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables);
-
- // the linear solver
- using LinearSolver = ILUBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>, LinearAlgebraTraitsFromAssembler<Assembler>>;
- auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
-
- // the discretization matrices for stationary linear problems
- using JacobianMatrix = GetPropType<TypeTag, Properties::JacobianMatrix>;
- auto A = std::make_shared<JacobianMatrix>();
- auto r = std::make_shared<SolutionVector>();
- assembler->setLinearSystem(A, r);
- assembler->assembleJacobianAndResidual(x);
-
- // we solve Ax = -r to save update and copy
- (*r) *= -1.0;
- linearSolver->solve(*A, x, *r);
-
- // the grid variables need to be up to date for subsequent output
- gridVariables->update(x);
-
- // write vtk output
- vtkWriter.write(1.0);
-
- timer.stop();
-
- const auto& comm = leafGridView.comm();
- std::cout << "Simulation took " << timer.elapsed() << " seconds on "
- << comm.size() << " processes.\n"
- << "The cumulative CPU time was " << timer.elapsed()*comm.size() << " seconds.\n";
-
- if (leafGridView.comm().rank() == 0)
- Parameters::print();
-
- return 0;
-
-}// end main
diff -ruN exercises/exercise-mainfile/exercise1pa_solution_main.cc exercises/solution/exercise-mainfile/exercise1pa_solution_main.cc
--- exercises/exercise-mainfile/exercise1pa_solution_main.cc 1970-01-01 01:00:00.000000000 +0100
+++ exercises/solution/exercise-mainfile/exercise1pa_solution_main.cc 2023-04-26 14:37:49.797150837 +0200
@@ -0,0 +1,143 @@
+// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+// vi: set et ts=4 sw=4 sts=4:
+/*****************************************************************************
+ * See the file COPYING for full copying permissions. *
+ * *
+ * This program is free software: you can redistribute it and/or modify *
+ * it under the terms of the GNU General Public License as published by *
+ * the Free Software Foundation, either version 3 of the License, or *
+ * (at your option) any later version. *
+ * *
+ * This program is distributed in the hope that it will be useful, *
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of *
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
+ * GNU General Public License for more details. *
+ * *
+ * You should have received a copy of the GNU General Public License *
+ * along with this program. If not, see <http://www.gnu.org/licenses/>. *
+ *****************************************************************************/
+/*!
+ * \file
+ *
+ * \brief test for the one-phase CC model
+ */
+#include <config.h>
+
+#include "1pproblem.hh"
+#include "properties.hh"
+
+#include <iostream>
+
+#include <dune/common/timer.hh>
+
+#include <dumux/common/initialize.hh>
+#include <dumux/common/properties.hh>
+#include <dumux/common/parameters.hh>
+
+#include <dumux/linear/istlsolvers.hh>
+#include <dumux/linear/linearalgebratraits.hh>
+#include <dumux/linear/linearsolvertraits.hh>
+
+#include <dumux/assembly/fvassembler.hh>
+
+#include <dumux/io/vtkoutputmodule.hh>
+#include <dumux/io/grid/gridmanager_yasp.hh>
+
+int main(int argc, char** argv)
+{
+ using namespace Dumux;
+
+ // define the type tag for this problem
+ using TypeTag = Properties::TTag::OnePIncompressible;
+
+ ////////////////////////////////////////////////////////////
+ ////////////////////////////////////////////////////////////
+
+ // initialize MPI+x, finalize is done automatically on exit
+ Dumux::initialize(argc, argv);
+
+ // initialize parameter tree
+ Parameters::init(argc, argv);
+
+ //////////////////////////////////////////////////////////////////////
+ // try to create a grid (from the given grid file or the input file)
+ /////////////////////////////////////////////////////////////////////
+
+ GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
+ gridManager.init();
+
+ ////////////////////////////////////////////////////////////
+ // run stationary linear problem on this grid
+ ////////////////////////////////////////////////////////////
+
+ // we compute on the leaf grid view
+ const auto& leafGridView = gridManager.grid().leafGridView();
+
+ // create the finite volume grid geometry
+ using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
+ auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
+
+ // the problem (initial and boundary conditions)
+ using Problem = GetPropType<TypeTag, Properties::Problem>;
+ auto problem = std::make_shared<Problem>(gridGeometry);
+
+ // the solution vector
+ using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
+ SolutionVector x(gridGeometry->numDofs());
+
+ // the grid variables
+ using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
+ auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
+ gridVariables->init(x);
+
+ // initialize the vtk output module
+ VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
+ using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
+ vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
+ using IOFields = GetPropType<TypeTag, Properties::IOFields>;
+ IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
+ vtkWriter.write(0.0);
+
+ Dune::Timer timer;
+
+ // TODO: dumux-course-task
+ // change the differentiation method to analytic by changing from DiffMethod::numeric to DiffMethod::analytic
+
+ // the assembler for stationary problems
+ using Assembler = FVAssembler<TypeTag, DiffMethod::analytic>;
+ auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables);
+
+ // the linear solver
+ using LinearSolver = ILUBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>, LinearAlgebraTraitsFromAssembler<Assembler>>;
+ auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
+
+ // the discretization matrices for stationary linear problems
+ using JacobianMatrix = GetPropType<TypeTag, Properties::JacobianMatrix>;
+ auto A = std::make_shared<JacobianMatrix>();
+ auto r = std::make_shared<SolutionVector>();
+ assembler->setLinearSystem(A, r);
+ assembler->assembleJacobianAndResidual(x);
+
+ // we solve Ax = -r to save update and copy
+ (*r) *= -1.0;
+ linearSolver->solve(*A, x, *r);
+
+ // the grid variables need to be up to date for subsequent output
+ gridVariables->update(x);
+
+ // write vtk output
+ vtkWriter.write(1.0);
+
+ timer.stop();
+
+ const auto& comm = leafGridView.comm();
+ std::cout << "Simulation took " << timer.elapsed() << " seconds on "
+ << comm.size() << " processes.\n"
+ << "The cumulative CPU time was " << timer.elapsed()*comm.size() << " seconds.\n";
+
+ if (leafGridView.comm().rank() == 0)
+ Parameters::print();
+
+ return 0;
+
+}// end main
diff -ruN exercises/exercise-mainfile/exercise1pbmain.cc exercises/solution/exercise-mainfile/exercise1pbmain.cc
--- exercises/exercise-mainfile/exercise1pbmain.cc 2023-06-01 14:31:33.153063018 +0200
+++ exercises/solution/exercise-mainfile/exercise1pbmain.cc 1970-01-01 01:00:00.000000000 +0100
@@ -1,132 +0,0 @@
-// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
-// vi: set et ts=4 sw=4 sts=4:
-/*****************************************************************************
- * See the file COPYING for full copying permissions. *
- * *
- * This program is free software: you can redistribute it and/or modify *
- * it under the terms of the GNU General Public License as published by *
- * the Free Software Foundation, either version 3 of the License, or *
- * (at your option) any later version. *
- * *
- * This program is distributed in the hope that it will be useful, *
- * but WITHOUT ANY WARRANTY; without even the implied warranty of *
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
- * GNU General Public License for more details. *
- * *
- * You should have received a copy of the GNU General Public License *
- * along with this program. If not, see <http://www.gnu.org/licenses/>. *
- *****************************************************************************/
-/*!
- * \file
- *
- * \brief test for the one-phase CC model
- */
-#include <config.h>
-
-#include "properties.hh"
-
-#include <iostream>
-
-#include <dune/common/timer.hh>
-
-#include <dumux/common/initialize.hh>
-#include <dumux/common/properties.hh>
-#include <dumux/common/parameters.hh>
-
-#include <dumux/linear/istlsolvers.hh>
-#include <dumux/linear/linearalgebratraits.hh>
-#include <dumux/linear/linearsolvertraits.hh>
-#include <dumux/nonlinear/newtonsolver.hh>
-
-#include <dumux/assembly/fvassembler.hh>
-
-#include <dumux/io/vtkoutputmodule.hh>
-#include <dumux/io/grid/gridmanager_yasp.hh>
-
-int main(int argc, char** argv)
-{
- using namespace Dumux;
-
- // define the type tag for this problem
- using TypeTag = Properties::TTag::OnePCompressible;
-
- ////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////
-
- // initialize MPI+x, finalize is done automatically on exit
- Dumux::initialize(argc, argv);
-
- // initialize parameter tree
- Parameters::init(argc, argv);
-
- //////////////////////////////////////////////////////////////////////
- // try to create a grid (from the given grid file or the input file)
- /////////////////////////////////////////////////////////////////////
-
- GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
- gridManager.init();
-
- ////////////////////////////////////////////////////////////
- // run stationary non-linear problem on this grid
- ////////////////////////////////////////////////////////////
-
- // we compute on the leaf grid view
- const auto& leafGridView = gridManager.grid().leafGridView();
-
- // create the finite volume grid geometry
- using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
- auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
-
- // the problem (initial and boundary conditions)
- using Problem = GetPropType<TypeTag, Properties::Problem>;
- auto problem = std::make_shared<Problem>(gridGeometry);
-
- // the solution vector
- using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
- SolutionVector x(gridGeometry->numDofs());
-
- // the grid variables
- using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
- auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
- gridVariables->init(x);
-
- // initialize the vtk output module
- VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
- using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
- vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
- using IOFields = GetPropType<TypeTag, Properties::IOFields>;
- IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
- vtkWriter.write(0.0);
-
- Dune::Timer timer;
- // the assembler for stationary problems
- using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
- auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables);
-
- // the linear solver
- using LinearSolver = ILUBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>, LinearAlgebraTraitsFromAssembler<Assembler>>;
- auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
-
- // the non-linear solver
- using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
- NewtonSolver nonLinearSolver(assembler, linearSolver);
-
- // linearize & solve
- nonLinearSolver.solve(x);
-
- // write vtk output
- vtkWriter.write(1.0);
-
- timer.stop();
-
- const auto& comm = leafGridView.comm();
- std::cout << "Simulation took " << timer.elapsed() << " seconds on "
- << comm.size() << " processes.\n"
- << "The cumulative CPU time was " << timer.elapsed()*comm.size() << " seconds.\n";
-
- if (leafGridView.comm().rank() == 0)
- Parameters::print();
-
- return 0;
-
-}// end main
diff -ruN exercises/exercise-mainfile/exercise1pcmain.cc exercises/solution/exercise-mainfile/exercise1pcmain.cc
--- exercises/exercise-mainfile/exercise1pcmain.cc 2023-06-01 14:31:33.153063018 +0200
+++ exercises/solution/exercise-mainfile/exercise1pcmain.cc 1970-01-01 01:00:00.000000000 +0100
@@ -1,158 +0,0 @@
-// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
-// vi: set et ts=4 sw=4 sts=4:
-/*****************************************************************************
- * See the file COPYING for full copying permissions. *
- * *
- * This program is free software: you can redistribute it and/or modify *
- * it under the terms of the GNU General Public License as published by *
- * the Free Software Foundation, either version 3 of the License, or *
- * (at your option) any later version. *
- * *
- * This program is distributed in the hope that it will be useful, *
- * but WITHOUT ANY WARRANTY; without even the implied warranty of *
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
- * GNU General Public License for more details. *
- * *
- * You should have received a copy of the GNU General Public License *
- * along with this program. If not, see <http://www.gnu.org/licenses/>. *
- *****************************************************************************/
-/*!
- * \file
- *
- * \brief test for the one-phase CC model
- */
-#include <config.h>
-
-#include "properties.hh"
-
-#include <iostream>
-
-#include <dumux/common/initialize.hh>
-#include <dumux/common/properties.hh>
-#include <dumux/common/parameters.hh>
-
-#include <dumux/linear/istlsolvers.hh>
-#include <dumux/linear/linearalgebratraits.hh>
-#include <dumux/linear/linearsolvertraits.hh>
-#include <dumux/nonlinear/newtonsolver.hh>
-
-#include <dumux/assembly/fvassembler.hh>
-
-#include <dumux/io/vtkoutputmodule.hh>
-#include <dumux/io/grid/gridmanager_yasp.hh>
-
-int main(int argc, char** argv)
-{
- using namespace Dumux;
-
- // define the type tag for this problem
- using TypeTag = Properties::TTag::OnePCompressible;
-
- ////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////
-
- // initialize MPI+x, finalize is done automatically on exit
- Dumux::initialize(argc, argv);
-
- // initialize parameter tree
- Parameters::init(argc, argv);
-
- //////////////////////////////////////////////////////////////////////
- // try to create a grid (from the given grid file or the input file)
- /////////////////////////////////////////////////////////////////////
-
- GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
- gridManager.init();
-
- ////////////////////////////////////////////////////////////
- // run instationary non-linear problem on this grid
- ////////////////////////////////////////////////////////////
-
- // we compute on the leaf grid view
- const auto& leafGridView = gridManager.grid().leafGridView();
-
- // create the finite volume grid geometry
- using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
- auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
-
- // the problem (initial and boundary conditions)
- using Problem = GetPropType<TypeTag, Properties::Problem>;
- auto problem = std::make_shared<Problem>(gridGeometry);
-
- // the solution vector
- using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
- SolutionVector x(gridGeometry->numDofs());
- problem->applyInitialSolution(x);
- auto xOld = x;
-
- // the grid variables
- using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
- auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
- gridVariables->init(x);
-
- // initialize the vtk output module
- VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
- using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
- vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
- using IOFields = GetPropType<TypeTag, Properties::IOFields>;
- IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
- vtkWriter.write(0.0);
-
- // get some time loop parameters
- using Scalar = GetPropType<TypeTag, Properties::Scalar>;
- auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
- auto dt = getParam<Scalar>("TimeLoop.DtInitial");
- auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
-
- // instantiate time loop
- auto timeLoop = std::make_shared<CheckPointTimeLoop<Scalar>>(0.0, dt, tEnd);
- timeLoop->setMaxTimeStepSize(maxDt);
-
- // the assembler with time loop for instationary problem
- using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
- auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables, timeLoop, xOld);
-
- // the linear solver
- using LinearSolver = ILUBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>, LinearAlgebraTraitsFromAssembler<Assembler>>;
- auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
-
- // the non-linear solver
- using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
- NewtonSolver nonLinearSolver(assembler, linearSolver);
-
- // set some check points for the time loop
- timeLoop->setPeriodicCheckPoint(tEnd/10.0);
-
- // time loop
- timeLoop->start(); do
- {
- // linearize & solve
- nonLinearSolver.solve(x, *timeLoop);
-
- // make the new solution the old solution
- xOld = x;
- gridVariables->advanceTimeStep();
-
- // advance to the time loop to the next step
- timeLoop->advanceTimeStep();
-
- // write vtk output
- if (timeLoop->isCheckPoint())
- vtkWriter.write(timeLoop->time());
-
- // report statistics of this time step
- timeLoop->reportTimeStep();
-
- // set new dt as suggested by the newton solver
- timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));
-
- } while (!timeLoop->finished());
-
- timeLoop->finalize(leafGridView.comm());
-
- if (leafGridView.comm().rank() == 0)
- Parameters::print();
-
- return 0;
-
-}// end main
diff -ruN exercises/exercise-mainfile/exercise_mainfile_a.input exercises/solution/exercise-mainfile/exercise_mainfile_a.input
--- exercises/exercise-mainfile/exercise_mainfile_a.input 2023-06-01 14:31:33.153063018 +0200
+++ exercises/solution/exercise-mainfile/exercise_mainfile_a.input 1970-01-01 01:00:00.000000000 +0100
@@ -1,18 +0,0 @@
-[Grid]
-LowerLeft = 0 0
-UpperRight = 1 1
-Cells = 20 20
-
-[Problem]
-Name = 1p_incompressible_stationary
-
-[SpatialParams]
-LensLowerLeft = 0.2 0.2
-LensUpperRight = 0.8 0.8
-
-Permeability = 1e-10 # [m^2]
-PermeabilityLens = 1e-12 # [m^2]
-
-[Assembly.NumericDifference]
-PriVarMagnitude = 1e5
-BaseEpsilon = 1e-10
diff -ruN exercises/exercise-mainfile/exercise_mainfile_a_solution.input exercises/solution/exercise-mainfile/exercise_mainfile_a_solution.input
--- exercises/exercise-mainfile/exercise_mainfile_a_solution.input 1970-01-01 01:00:00.000000000 +0100
+++ exercises/solution/exercise-mainfile/exercise_mainfile_a_solution.input 2023-04-26 14:37:49.797150837 +0200
@@ -0,0 +1,17 @@
+[Grid]
+LowerLeft = 0 0
+UpperRight = 1 1
+Cells = 20 20
+
+[Problem]
+Name = 1p_incompressible_stationary
+
+[SpatialParams]
+LensLowerLeft = 0.2 0.2
+LensUpperRight = 0.8 0.8
+
+Permeability = 1e-10 # [m^2]
+PermeabilityLens = 1e-12 # [m^2]
+
+[Assembly.NumericDifference]
+PriVarMagnitude = 1e5
diff -ruN exercises/exercise-mainfile/exercise_mainfile_b.input exercises/solution/exercise-mainfile/exercise_mainfile_b.input
--- exercises/exercise-mainfile/exercise_mainfile_b.input 2023-06-01 14:31:33.153063018 +0200
+++ exercises/solution/exercise-mainfile/exercise_mainfile_b.input 1970-01-01 01:00:00.000000000 +0100
@@ -1,17 +0,0 @@
-[Grid]
-LowerLeft = 0 0
-UpperRight = 1 1
-Cells = 20 20
-
-[Problem]
-Name = 1p_compressible_stationary
-
-[SpatialParams]
-LensLowerLeft = 0.2 0.2
-LensUpperRight = 0.8 0.8
-
-Permeability = 1e-10 # [m^2]
-PermeabilityLens = 1e-12 # [m^2]
-
-[Assembly.NumericDifference]
-PriVarMagnitude = 1e5
diff -ruN exercises/exercise-mainfile/exercise_mainfile_c.input exercises/solution/exercise-mainfile/exercise_mainfile_c.input
--- exercises/exercise-mainfile/exercise_mainfile_c.input 2023-06-01 14:31:33.153063018 +0200
+++ exercises/solution/exercise-mainfile/exercise_mainfile_c.input 1970-01-01 01:00:00.000000000 +0100
@@ -1,21 +0,0 @@
-[TimeLoop]
-TEnd = 0.1
-DtInitial = 0.01
-
-[Grid]
-LowerLeft = 0 0
-UpperRight = 1 1
-Cells = 20 20
-
-[Problem]
-Name = 1p_compressible_instationary
-
-[SpatialParams]
-LensLowerLeft = 0.2 0.2
-LensUpperRight = 0.8 0.8
-
-Permeability = 1e-10 # [m^2]
-PermeabilityLens = 1e-12 # [m^2]
-
-[Assembly.NumericDifference]
-PriVarMagnitude = 1e5
\ No newline at end of file
diff -ruN exercises/exercise-mainfile/properties.hh exercises/solution/exercise-mainfile/properties.hh
--- exercises/exercise-mainfile/properties.hh 2023-06-01 14:31:33.153063018 +0200
+++ exercises/solution/exercise-mainfile/properties.hh 2023-04-26 15:09:50.146538947 +0200
@@ -35,20 +35,19 @@
#include <dumux/discretization/ccmpfa.hh>
#include <dumux/discretization/box.hh>
-
#include <dumux/porousmediumflow/1p/model.hh>
-// TODO: dumux-course-task 3
-// uncomment the incompressiblelocalresidual which is a specialization of the standard immiscible localresidual for one phase incompressible cases and provides an analytic jacobian.
-// #include <dumux/porousmediumflow/1p/incompressiblelocalresidual.hh>
+// TODO: dumux-course-task
+// uncomment the incompressiblelocalresidual which is a specialization of the standard immisible localresidual for one phase incompressible cases and provides an analytic jacobian.
+#include <dumux/porousmediumflow/1p/incompressiblelocalresidual.hh>
#include "1pspatialparams.hh"
#include "1pproblem.hh"
namespace Dumux::Properties {
-// Create the new type tag nodes:
+// Create the new type tag nodes.
// Here we define the incompressible type tag as well as the compressible type tag.
-// The incompressible uses a different fluidsystem than the compressible
+// The incompressible uses a different fluidsystem than the compressible.
namespace TTag {
struct OnePBase { using InheritsFrom = std::tuple<OneP>; };
struct OnePIncompressible { using InheritsFrom = std::tuple<OnePBase, CCTpfaModel>; };
@@ -79,10 +78,10 @@
using type = FluidSystems::OnePLiquid<Scalar, Components::SimpleH2O<Scalar> >;
};
-// TODO: dumux-course-task 3
+// TODO: dumux-course-task
// set the OneP Incompressible local residual for the OnePIncompressible type tag. This provides an analytic jacobian to be used for the analytic solution. Change that by setting:
-// template<class TypeTag>
-// struct LocalResidual<TypeTag, TTag::OnePIncompressible> { using type = OnePIncompressibleLocalResidual<TypeTag>; };
+template<class TypeTag>
+struct LocalResidual<TypeTag, TTag::OnePIncompressible> { using type = OnePIncompressibleLocalResidual<TypeTag>; };
// the fluid system for compressible tests
diff -ruN exercises/exercise-mainfile/README.md exercises/solution/exercise-mainfile/README.md
--- exercises/exercise-mainfile/README.md 2023-06-01 14:31:33.153063018 +0200
+++ exercises/solution/exercise-mainfile/README.md 1970-01-01 01:00:00.000000000 +0100
@@ -1,203 +0,0 @@
-# Exercise Mainfiles (DuMuX course)
-<br>
-
-## Problem set-up
-
-This exercise will make you familiar with the program sequence in DuMu<sup>X</sup> and how different levels of complexity can be realized in the main file according to the complexity of your physical problem.
-
-In order to do so, there are three examples of one phase flow problems. Two examples (a and b) are stationary problems and the third example (c) is an instationary problem.
-
-The stationary examples differ in the `FluidSystem` they are using, which means they differ in the fluid properties (e.g. density, thermal conductivity etc). The first problem (a) uses an incompressible fluid, i.e. the density does not change when pressure changes. This makes it possible to solve the system linearly. The second problem uses a compressible fluid, that means the density is a function of pressure and we need to use a nonlinear solver.
-
-To summarize, the problems differ in:
-* exercise mainfile a: a one-phase incompressible, stationary problem
-* exercise mainfile b: a one-phase compressible, stationary problem
-* exercise mainfile c: a one-phase compressible, instationary problem
-
-The problem set-up for all three examples is always the same: It is a two dimensional problem and the domain is $1 m$ by $1 m$. It is a heterogeneous set-up with a lens in the middle of the domain which has a lower permeability ($1\cdot 10^{-12} m^2$ compared to $1\cdot 10^{-10} m^2$ in the rest of the domain).
-
-<img src="https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/raw/master/exercises/extradoc/exercise1_1p_setup.png" width="1000">
-
-In the beginning, there is a uniform pressure of $1\cdot 10^5 Pa$ in the whole domain. On the top and the bottom border, dirichlet boundary conditions are set with a pressure of $1\cdot 10^5 Pa$ on top and $2 \cdot 10^5 Pa$ on the bottom. At the sides, there is no in- or outflow and there are no source terms.
-
-## Preparing the exercise
-
-* Navigate to the directory `dumux-course/exercises/exercise-mainfile`
-
-<br><br>
-### Task 1: Getting familiar with the code
-<hr>
-
-Locate all the files you will need for this exercise
-* The __main file__ for the __incompressible, stationary__ problem : `exercise1pamain.cc`
-* The __main file__ for the __compressible, stationary__ problem : `exercise1pbmain.cc`
-* The __main file__ for the __compressible, instationary__ problem : `exercise1pcmain.cc`
-* The shared __problem file__: `1pproblem.hh`
-* The shared __properties file__: `properties.hh`
-* The shared __spatial parameters file__: `1pspatialparams.hh`
-* The __input file__ for the __incompressible, stationary__ problem: `exercise_mainfile_a.input`
-* The __input file__ for the __compressible, stationary__ problem: `exercise_mainfile_b.input`
-* The __input file__ for the __compressible, instationary__ problem: `exercise_mainfile_c.input`
-
-Please pay special attention to the similarities and differences in the three main files.
-The first main file is solved linearly and does not need a newton solver or any other nonlinear solver method.
-The second problem is a nonlinear problem and uses newton's method to solve the system.
-The third problem is nonlinear and additionally instationary.
-Therefore, a time loop needs to be included in the main file.
-
-The general structure of any main file in DuMuX is:
-
-* the specific problem `TypeTag` is defined for the problem. This example shows the `TypeTag` for the `CompressibleProblem`:
-
-```c++
-// define the type tag for this problem
-using TypeTag = Properties::TTag::OnePCompressible;
-```
-The `TypeTag` is created in the `properties.hh`. There, you can see that it inherits from the __OneP__ and additionally from the __CCTpfaModel__.
-The latter defines the discretization method, which is in this case the cell-centered tpfa method.
-
-* A gridmanager tries to create the grid either from a grid file or the input file:
-
-```c++
-GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
-gridManager.init();
-```
-* We create the finite volume grid geometry, the problem, solution vector and the grid variables and initialize them.
-Additionally, we initialize the vtk output. Each model has a predefined model specific output with relevant parameters for that model:
-
-```c++
-// create the finite volume grid geometry
-using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
-auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
-
-// the problem (initial and boundary conditions)
-using Problem = GetPropType<TypeTag, Properties::Problem>;
-auto problem = std::make_shared<Problem>(fvGridGeometry);
-
-// the solution vector
-using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
-SolutionVector x(fvGridGeometry->numDofs());
-
-// the grid variables
-using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
-auto gridVariables = std::make_shared<GridVariables>(problem, fvGridGeometry);
-gridVariables->init(x);
-
-// initialize the vtk output module
-VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
-using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
-vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
-using IOFields = GetPropType<TypeTag, Properties::IOFields>;
-IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
-vtkWriter.write(0.0);
-```
-
-* Then, we need to assemble and solve the system. Depending on the problem, this can be done with a linear solver or a nonlinear solver.
-If the problem is time dependent, we additionally need a time loop. An example for that is given in `exercise1pcmain.cc`:
-
-```c++
-// get some time loop parameters
-using Scalar = GetPropType<TypeTag, Properties::Scalar>;
-auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
-auto dt = getParam<Scalar>("TimeLoop.DtInitial");
-auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
-
-// instantiate time loop
-auto timeLoop = std::make_shared<CheckPointTimeLoop<Scalar>>(0.0, dt, tEnd);
-timeLoop->setMaxTimeStepSize(maxDt);
-
-// the assembler with time loop for instationary problem
-using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
-auto assembler = std::make_shared<Assembler>(problem, fvGridGeometry, gridVariables, timeLoop);
-
-// the linear solver
-using LinearSolver = ILUBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>, LinearAlgebraTraitsFromAssembler<Assembler>>;
-auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
-
-// the non-linear solver
-using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
-NewtonSolver nonLinearSolver(assembler, linearSolver);
-
-// set some check points for the time loop
-timeLoop->setPeriodicCheckPoint(tEnd/10.0);
-
-// time loop
-timeLoop->start(); do
-{
- // linearize & solve
- nonLinearSolver.solve(x, *timeLoop);
-
- // make the new solution the old solution
- xOld = x;
- gridVariables->advanceTimeStep();
-
- // advance to the time loop to the next step
- timeLoop->advanceTimeStep();
-
- // write vtk output
- if (timeLoop->isCheckPoint())
- vtkWriter.write(timeLoop->time());
-
- // report statistics of this time step
- timeLoop->reportTimeStep();
-
- // set new dt as suggested by the newton solver
- timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));
-
-} while (!timeLoop->finished());
-
-timeLoop->finalize(leafGridView.comm());
-```
-
-<br><br><br>
-### Task 2: Compiling and running an executable
-<hr>
-
-* Change to the build-directory
-
-```bash
-cd ../../build-cmake/exercises/exercise-mainfile
-```
-
-* Compile all three executables `exercise_mainfile_a` and `exercise_mainfile_b` and `exercise_mainfile_c`
-
-```bash
-make exercise_mainfile_a exercise_mainfile_b exercise_mainfile_c
-```
-
-* Execute the three problems and inspect the result
-
-```bash
-./exercise_mainfile_a
-./exercise_mainfile_b
-./exercise_mainfile_c
-```
-
-* You can look at the results (e.g. for the first example) with paraview:
-
-```bash
-paraview 1p_incompressible_stationary.pvd
-```
-
-<br><br><br>
-### Task 3: Analytical differentiation
-<hr>
-
-In the input file `exercise_mainfile_a.input`, you will see that there is a variable `BaseEpsilon`.
-This defines the base value for the epsilon used in the numeric differentiation.
-If that value is too small, you will see that the solution of the numeric differentiation is not correct.
-Change that value to $1 \cdot 10^{-15}$ and have a look at the solution.
-
-For the incompressible one phase problem, it is also possible to have an analytic solution method.
-In this case, the epsilon does not play a role anymore, since the derivatives are calculated analytically.
-To implement that, follow the tips in the `exercise1pamain.cc` and the `properties.hh` marked by:
-
-```c++
-// TODO: dumux-course-task 3
-```
-For the analytic solution of your immiscible problem, you need analytic solutions for the derivatives of the jacobian.
-For that, we have a special local residual, the `OnePIncompressibleLocalResidual` which provides that.
-You just need to include `incompressiblelocalresidual.hh` in your `properties.hh`
-and use that instead of the `immisciblelocalresidual.hh` which is used as a default for all immiscible models.
-
-Additionally, you need to set the differentiation method in the main file `exercise1pamain.cc` to analytic.