Newer
Older
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*****************************************************************************
* See the file COPYING for full copying permissions. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
*****************************************************************************/
/*!
* \file
*
* \brief The two-phase porousmediumflow problem for exercise-basic
#ifndef DUMUX_EX_BASIC_PROBLEM_2P2C_HH
#define DUMUX_EX_BASIC_PROBLEM_2P2C_HH
#include <dumux/discretization/cellcentered/tpfa/properties.hh>
#include <dumux/porousmediumflow/2p2c/model.hh>
#include <dumux/porousmediumflow/problem.hh>
#include <dumux/material/fluidsystems/h2on2.hh>
#include "injection2pspatialparams.hh"
namespace Dumux {
// forward declare problem
template <class TypeTag>
class Injection2p2cProblem;
namespace Properties {
// Create new type tags
namespace TTag {
struct Injection2p2cTypeTag { using InheritsFrom = std::tuple<TwoPTwoC>; };
struct Injection2p2cCCTypeTag { using InheritsFrom = std::tuple<CCTpfaModel, Injection2p2cTypeTag>; };
} // end namespace TTag
template<class TypeTag>
struct Grid<TypeTag, TTag::Injection2p2cTypeTag> { using type = Dune::YaspGrid<2>; };
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::Injection2p2cTypeTag> { using type = Injection2p2cProblem<TypeTag>; };
// Set the spatial parameters
SET_TYPE_PROP(Injection2p2cTypeTag, SpatialParams,
InjectionSpatialParams<GetPropType<TypeTag, Properties::FVGridGeometry>,
GetPropType<TypeTag, Properties::Scalar>>);
// Set fluid configuration
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::Injection2p2cTypeTag> { using type = FluidSystems::H2ON2<GetPropType<TypeTag, Properties::Scalar>, FluidSystems::H2ON2DefaultPolicy</*fastButSimplifiedRelations=*/ true>>; };
// Define whether mole(true) or mass (false) fractions are used
template<class TypeTag>
struct UseMoles<TypeTag, TTag::Injection2p2cTypeTag> { static constexpr bool value = true; };
} // end namespace Properties
/*!
* \ingroup TwoPTwoCModel
* \ingroup ImplicitTestProblems
* \brief Gas injection problem where a gas (here nitrogen) is injected into a fully
* water saturated medium. During buoyancy driven upward migration the gas
* passes a high temperature area.
*
* The domain is sized 60 m times 40 m.
*
* For the mass conservation equation neumann boundary conditions are used on
* the top, on the bottom and on the right of the domain, while dirichlet conditions
* apply on the left boundary.
*
* Gas is injected at the right boundary from 7 m to 15 m at a rate of
* 0.001 kg/(s m), the remaining neumann boundaries are no-flow
* boundaries.
*
* At the dirichlet boundaries a hydrostatic pressure and a gas saturation of zero a
*
* This problem uses the \ref TwoPModel model.
*/
template<class TypeTag>
class Injection2p2cProblem : public PorousMediumFlowProblem<TypeTag>
{
using ParentType = PorousMediumFlowProblem<TypeTag>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using BoundaryTypes = GetPropType<TypeTag, Properties::BoundaryTypes>;
using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
using FVElementGeometry = typename GetPropType<TypeTag, Properties::FVGridGeometry>::LocalView;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using NumEqVector = GetPropType<TypeTag, Properties::NumEqVector>;
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
enum { dimWorld = GridView::dimensionworld };
using Element = typename GridView::template Codim<0>::Entity;
using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
public:
Injection2p2cProblem(std::shared_ptr<const FVGridGeometry> fvGridGeometry)
: ParentType(fvGridGeometry)
{
// initialize the tables of the fluid system
FluidSystem::init(/*tempMin=*/273.15,
/*tempMax=*/423.15,
/*numTemp=*/50,
/*pMin=*/0.0,
/*pMax=*/30e6,
/*numP=*/300);
// name of the problem and output file
// getParam<TYPE>("GROUPNAME.PARAMNAME") reads and sets parameter PARAMNAME
// of type TYPE given in the group GROUPNAME from the input file
name_ = getParam<std::string>("Problem.Name");
// depth of the aquifer, units: m
aquiferDepth_ = getParam<Scalar>("Problem.AquiferDepth");
// the duration of the injection, units: second
injectionDuration_ = getParam<Scalar>("Problem.InjectionDuration");
}
/*!
* \name Problem parameters
*/
// \{
/*!
* \brief Returns the problem name
*
* This is used as a prefix for files generated by the simulation.
*/
std::string name() const
{ return name_+"-2p2c"; }
/*!
* \brief Returns the temperature \f$ K \f$
*/
Scalar temperature() const
{
return 273.15 + 30; // [K]
}
// \}
/*!
* \name Boundary conditions
*/
// \{
/*!
* \brief Specifies which kind of boundary condition should be
* used for which equation on a given boundary segment.
*
* \param globalPos The position for which the bc type should be evaluated
*/
BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
{
BoundaryTypes bcTypes;
if (globalPos[0] < eps_)
bcTypes.setAllDirichlet();
else
bcTypes.setAllNeumann();
return bcTypes;
}
/*!
* \brief Evaluates the boundary conditions for a Dirichlet
* boundary segment
*
* \param globalPos The global position
*/
PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const
{
return initialAtPos(globalPos);
}
/*!
* \brief Evaluate the boundary conditions for a neumann
* boundary segment.
*
* \param globalPos The position of the integration point of the boundary segment.
*/
PrimaryVariables neumannAtPos(const GlobalPosition &globalPos) const
{
// initialize values to zero, i.e. no-flow Neumann boundary conditions
PrimaryVariables values(0.0);
// if we are inside the injection zone set inflow Neumann boundary conditions
if (time_ < injectionDuration_
&& globalPos[1] < 15 + eps_ && globalPos[1] > 7 - eps_ && globalPos[0] > 0.9*this->fvGridGeometry().bBoxMax()[0])
{
// TODO: dumux-course-task
//instead of setting -1e-4 here directly use totalAreaSpecificInflow_ in the computation
// inject nitrogen. negative values mean injection
// convert from units kg/(s*m^2) to mole/(s*m^2)
values[Indices::conti0EqIdx + FluidSystem::N2Idx] = -1e-4/FluidSystem::molarMass(FluidSystem::N2Idx);
values[Indices::conti0EqIdx + FluidSystem::H2OIdx] = 0.0;
}
return values;
}
// \}
/*!
* \name Volume terms
*/
// \{
/*!
* \brief Evaluate the source term for all phases within a given
* sub-control-volume.
*
* \param globalPos The position for which the source term should be evaluated
*/
NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
{
return NumEqVector(0.0);
}
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/*!
* \brief Evaluate the initial value for a control volume.
*
* \param globalPos The position for which the initial condition should be evaluated
*/
PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
{
PrimaryVariables values(0.0);
values.setState(Indices::firstPhaseOnly);
// get the water density at atmospheric conditions
const Scalar densityW = FluidSystem::H2O::liquidDensity(temperature(), 1.0e5);
// assume an intially hydrostatic liquid pressure profile
// note: we subtract rho_w*g*h because g is defined negative
const Scalar pw = 1.0e5 - densityW*this->gravity()[dimWorld-1]*(aquiferDepth_ - globalPos[dimWorld-1]);
// initially we have some nitrogen dissolved
// saturation mole fraction would be
// moleFracLiquidN2 = (pw + pc + p_vap^sat)/henry;
const Scalar moleFracLiquidN2 = pw*0.95/BinaryCoeff::H2O_N2::henry(temperature());
// note that because we start with a single phase system the primary variables
// are pl and x^w_N2. This will switch as soon after we start injecting to a two
// phase system so the primary variables will be pl and Sn (non-wetting saturation).
values[Indices::pressureIdx] = pw;
values[Indices::switchIdx] = moleFracLiquidN2;
return values;
}
// \}
//! set the time for the time dependent boundary conditions (called from main)
void setTime(Scalar time)
{ time_ = time; }
private:
static constexpr Scalar eps_ = 1e-6;
std::string name_; //! Problem name
Scalar aquiferDepth_; //! Depth of the aquifer in m
Scalar injectionDuration_; //! Duration of the injection in seconds
Scalar time_;
//TODO: dumux-course-task
//define the Scalar totalAreaSpecificInflow_ here
};
} //end namespace Dumux
#endif