Skip to content
Snippets Groups Projects
exercise-basic.patch 31.8 KiB
Newer Older
diff -ruN exercises/exercise-basic/2pmain.cc exercises/solution/exercise-basic/2pmain.cc
--- exercises/exercise-basic/2pmain.cc	2025-03-03 15:56:59.902625104 +0100
+++ exercises/solution/exercise-basic/2pmain.cc	1970-01-01 01:00:00.000000000 +0100
@@ -1,145 +0,0 @@
-// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
-// vi: set et ts=4 sw=4 sts=4:
-//
-// SPDX-FileCopyrightInfo: Copyright © DuMux-Course contributors, see AUTHORS.md in root folder
-// SPDX-License-Identifier: GPL-3.0-or-later
-//
-/*!
- * \file
- * \brief The main file for the two-phase porousmediumflow problem of exercise-basic
- */
-#include <config.h>
-
-#include <iostream>
-
-#include <dumux/common/initialize.hh>
-#include <dumux/common/properties.hh>
-#include <dumux/common/parameters.hh>
-
-#include <dumux/linear/istlsolvers.hh>
-#include <dumux/linear/linearsolvertraits.hh>
-#include <dumux/linear/linearalgebratraits.hh>
-#include <dumux/nonlinear/newtonsolver.hh>
-
-#include <dumux/assembly/fvassembler.hh>
-#include <dumux/assembly/diffmethod.hh>
-
-#include <dumux/io/vtkoutputmodule.hh>
-#include <dumux/io/grid/gridmanager_yasp.hh>
-
-// The properties file, where the compile time options are defined
-#include "properties2p.hh"
-
-////////////////////////
-// the main function
-////////////////////////
-int main(int argc, char** argv)
-{
-    using namespace Dumux;
-
-    // define the type tag for this problem
-    using TypeTag = Properties::TTag::Injection2pCC;
-
-    /// initialize MPI+X, finalize is done automatically on exit
-    Dumux::initialize(argc, argv);
-
-    // parse command line arguments and input file
-    Parameters::init(argc, argv);
-
-    // try to create a grid (from the given grid file or the input file)
-    GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
-    gridManager.init();
-
-    ////////////////////////////////////////////////////////////
-    // run instationary non-linear problem on this grid
-    ////////////////////////////////////////////////////////////
-
-    // we compute on the leaf grid view
-    const auto& leafGridView = gridManager.grid().leafGridView();
-
-    // create the finite volume grid geometry
-    using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
-    auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
-
-    // the problem (initial and boundary conditions)
-    using Problem = GetPropType<TypeTag, Properties::Problem>;
-    auto problem = std::make_shared<Problem>(gridGeometry);
-
-    // the solution vector
-    using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
-    SolutionVector x;
-    problem->applyInitialSolution(x);
-    auto xOld = x;
-
-    // the grid variables
-    using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
-    auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
-    gridVariables->init(x);
-
-    // initialize the vtk output module
-    using IOFields = GetPropType<TypeTag, Properties::IOFields>;
-
-    // use non-conforming output for the test with interface solver
-    const auto ncOutput = getParam<bool>("Problem.UseNonConformingOutput", false);
-    VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name(), "",
-                                                             ncOutput ? Dune::VTK::nonconforming : Dune::VTK::conforming);
-    using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
-    vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
-    IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
-    vtkWriter.write(0.0);
-
-    // instantiate time loop
-    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
-    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
-    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
-    const auto dt = getParam<Scalar>("TimeLoop.DtInitial");
-    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(0.0, dt, tEnd);
-    timeLoop->setMaxTimeStepSize(maxDt);
-
-    // the assembler with time loop for instationary problem
-    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
-    auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables, timeLoop, xOld);
-
-    // the linear solver
-    using LinearSolver = AMGBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>, LinearAlgebraTraitsFromAssembler<Assembler>>;
-    auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
-
-    // the non-linear solver
-    using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
-    NewtonSolver nonLinearSolver(assembler, linearSolver);
-
-    // time loop
-    timeLoop->start();
-    while (!timeLoop->finished())
-    {
-        //set time in problem (is used in time-dependent Neumann boundary condition)
-        problem->setTime(timeLoop->time()+timeLoop->timeStepSize());
-
-        // solve the non-linear system with time step control
-        nonLinearSolver.solve(x, *timeLoop);
-
-        // make the new solution the old solution
-        xOld = x;
-        gridVariables->advanceTimeStep();
-
-        // advance to the time loop to the next step
-        timeLoop->advanceTimeStep();
-
-        // report statistics of this time step
-        timeLoop->reportTimeStep();
-
-        // set new dt as suggested by the newton solver
-        timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));
-
-        // output to vtk
-        vtkWriter.write(timeLoop->time());
-    }
-
-    timeLoop->finalize(leafGridView.comm());
-
-    // print parameter report
-    if (leafGridView.comm().rank() == 0)
-        Parameters::print();
-
-    return 0;
-} // end main
diff -ruN exercises/exercise-basic/2pnimain.cc exercises/solution/exercise-basic/2pnimain.cc
--- exercises/exercise-basic/2pnimain.cc	1970-01-01 01:00:00.000000000 +0100
+++ exercises/solution/exercise-basic/2pnimain.cc	2025-03-03 15:56:59.909624983 +0100
@@ -0,0 +1,138 @@
+// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+// vi: set et ts=4 sw=4 sts=4:
+//
+// SPDX-FileCopyrightInfo: Copyright © DuMux-Course contributors, see AUTHORS.md in root folder
+// SPDX-License-Identifier: GPL-3.0-or-later
+//
+/*!
+ * \file
+ * \brief The solution main file for the two-phase porousmediumflow problem of exercise-basic
+ */
+#include <config.h>
+
+#include <iostream>
+
+#include <dumux/common/initialize.hh>
+#include <dumux/common/properties.hh>
+#include <dumux/common/parameters.hh>
+
+#include <dumux/linear/istlsolvers.hh>
+#include <dumux/linear/linearsolvertraits.hh>
+#include <dumux/linear/linearalgebratraits.hh>
+#include <dumux/nonlinear/newtonsolver.hh>
+
+#include <dumux/assembly/fvassembler.hh>
+#include <dumux/assembly/diffmethod.hh>
+
+#include <dumux/io/vtkoutputmodule.hh>
+#include <dumux/io/grid/gridmanager_yasp.hh>
+
+// The properties file, where the compile time options are defined
+#include "properties2pni.hh"
+
+int main(int argc, char** argv)
+{
+    using namespace Dumux;
+
+    // define the type tag for this problem
+    using TypeTag = Properties::TTag::Injection2pNICC;
+
+    // initialize MPI+X, finalize is done automatically on exit
+    Dumux::initialize(argc, argv);
+
+    // parse command line arguments and input file
+    Parameters::init(argc, argv);
+
+    // try to create a grid (from the given grid file or the input file)
+    GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
+    gridManager.init();
+
+    ////////////////////////////////////////////////////////////
+    // run instationary non-linear problem on this grid
+    ////////////////////////////////////////////////////////////
+
+    // we compute on the leaf grid view
+    const auto& leafGridView = gridManager.grid().leafGridView();
+
+    // create the finite volume grid geometry
+    using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
+    auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
+
+    // the problem (initial and boundary conditions)
+    using Problem = GetPropType<TypeTag, Properties::Problem>;
+    auto problem = std::make_shared<Problem>(gridGeometry);
+
+    // the solution vector
+    using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
+    SolutionVector x;
+    problem->applyInitialSolution(x);
+    auto xOld = x;
+
+    // the grid variables
+    using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
+    auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
+    gridVariables->init(x);
+
+    // initialize the vtk output module
+    using IOFields = GetPropType<TypeTag, Properties::IOFields>;
+    VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
+    using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
+    vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
+    IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
+    vtkWriter.write(0.0);
+
+    // instantiate time loop
+    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
+    const auto tEnd = getParam<Scalar>("TimeLoop.TEnd");
+    const auto maxDt = getParam<Scalar>("TimeLoop.MaxTimeStepSize");
+    const auto dt = getParam<Scalar>("TimeLoop.DtInitial");
+    auto timeLoop = std::make_shared<TimeLoop<Scalar>>(0.0, dt, tEnd);
+    timeLoop->setMaxTimeStepSize(maxDt);
+
+    // the assembler with time loop for instationary problem
+    using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
+    auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables, timeLoop, xOld);
+
+    // the linear solver
+    using LinearSolver = AMGBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>, LinearAlgebraTraitsFromAssembler<Assembler>>;
+    auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
+
+    // the non-linear solver
+    using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
+    NewtonSolver nonLinearSolver(assembler, linearSolver);
+
+    // time loop
+    timeLoop->start();
+    while (!timeLoop->finished())
+    {
+        //set time in problem (is used in time-dependent Neumann boundary condition)
+        problem->setTime(timeLoop->time()+timeLoop->timeStepSize());
+
+        // solve the non-linear system with time step control
+        nonLinearSolver.solve(x, *timeLoop);
+
+        // make the new solution the old solution
+        xOld = x;
+        gridVariables->advanceTimeStep();
+
+        // advance to the time loop to the next step
+        timeLoop->advanceTimeStep();
+
+        // report statistics of this time step
+        timeLoop->reportTimeStep();
+
+        // set new dt as suggested by the newton solver
+        timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));
+
+        // output to vtk
+        vtkWriter.write(timeLoop->time());
+    }
+
+    timeLoop->finalize(leafGridView.comm());
+
+    // print parameter report
+    if (leafGridView.comm().rank() == 0)
+        Parameters::print();
+
+    return 0;
+} // end main
diff -ruN exercises/exercise-basic/CMakeLists.txt exercises/solution/exercise-basic/CMakeLists.txt
--- exercises/exercise-basic/CMakeLists.txt	2025-03-03 15:56:59.902625104 +0100
+++ exercises/solution/exercise-basic/CMakeLists.txt	2025-03-03 15:56:59.909624983 +0100
@@ -1,12 +1,9 @@
 # SPDX-FileCopyrightInfo: Copyright © DuMux-Course contributors, see AUTHORS.md in root folder
 # SPDX-License-Identifier: GPL-3.0-or-later
 
-# the immiscible two-phase simulation program
-dumux_add_test(NAME exercise_basic_2p
-               SOURCES 2pmain.cc)
-
-# here, add the two-phase non-isothermal simulation program
-
+# the two-phase non-isothermal simulation program
+dumux_add_test(NAME exercise_basic_2pni_solution
+               SOURCES 2pnimain.cc)
 
 # add a symlink for each input file
diff -ruN exercises/exercise-basic/injection2pniproblem.hh exercises/solution/exercise-basic/injection2pniproblem.hh
--- exercises/exercise-basic/injection2pniproblem.hh	2025-03-03 15:56:59.902625104 +0100
+++ exercises/solution/exercise-basic/injection2pniproblem.hh	2025-03-03 15:56:59.909624983 +0100
@@ -7,7 +7,7 @@
 /*!
  * \file
  *
- * \brief The two-phase nonisothermal porousmediumflow problem for exercise-basic
+ * \brief The solution of the two-phase nonisothermal porousmediumflow problem for exercise-basic
  */
 
 #ifndef DUMUX_EX_BASIC_PROBLEM_2PNI_HH
@@ -55,6 +55,8 @@
     using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
     using NumEqVector = Dumux::NumEqVector<PrimaryVariables>;
 
+    using N2 = typename FluidSystem::N2;
+
     static constexpr int dimWorld = GridView::dimensionworld;
     using Element = typename GridView::template Codim<0>::Entity;
     using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
@@ -103,13 +105,6 @@
Ivan Buntic's avatar
Ivan Buntic committed
-          * TODO:dumux-course-task 4:
-          * Set Dirichlet conditions for the energy equation on the left boundary
-          * and Neumann everywhere else.
-          * Think about: is there anything necessary to do here?
@@ -122,12 +117,6 @@
     PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const
     {
         return initialAtPos(globalPos);
-
-         /*!
Ivan Buntic's avatar
Ivan Buntic committed
-          * TODO:dumux-course-task 4:
-          * Set Dirichlet conditions for the energy equation on the left boundary.
-          * Think about: is there anything necessary to do here?
@@ -144,17 +133,18 @@
         // if we are inside the injection zone set inflow Neumann boundary conditions
         if (injectionActive() && onInjectionBoundary(globalPos))
Ivan Buntic's avatar
Ivan Buntic committed
+            const Scalar injectionRate = -1e-4;
+
             // inject nitrogen. Negative values mean injection
             // unit: kg/(s*m^2)
Ivan Buntic's avatar
Ivan Buntic committed
-            values[Indices::conti0EqIdx + FluidSystem::N2Idx] = -1e-4;
+            values[Indices::conti0EqIdx + FluidSystem::N2Idx] = injectionRate;
             values[Indices::conti0EqIdx + FluidSystem::H2OIdx] = 0.0;
Ivan Buntic's avatar
Ivan Buntic committed
-          * TODO:dumux-course-task 4:
-          * Set Neumann noflow conditions for the energy equation everywhere else except the left boundary.
-          * Additionally, consider the energy flux at the injection point which is equal to the product of the respective mass flux and the matching enthalpy. Use the function         `gasEnthalpy(temperature,pressure)` from the N2 component to access the necessary enthalpy.
-          * hint: use `Indices::energyEqIdx` to access the entry belonging to the energy flux.
+            // energy fluxes are always mass specific
Ivan Buntic's avatar
Ivan Buntic committed
+            // unit:  W/(m^2)
+            const Scalar temperatureAtInjection  = initialAtPos(globalPos)[Indices::temperatureIdx];/*K*/
+            const Scalar pressureAtInjection     = initialAtPos(globalPos)[Indices::pressureIdx];/*Pa*/
+            values[Indices::energyEqIdx]         = injectionRate /*kg/(m^2 s)*/ *N2::gasEnthalpy(temperatureAtInjection, pressureAtInjection)/*J/kg*/;
@@ -190,13 +180,10 @@
         values[Indices::pressureIdx] = pw;
         values[Indices::saturationIdx] = 0.0;
 
-        /*!
Ivan Buntic's avatar
Ivan Buntic committed
-        *  TODO:dumux-course-task 4:
-        * Set a temperature gradient of 0.03 K per m beginning at 283 K here.
-        * Hint: you can use aquiferDepth_ and the globalPos similar to the pressure gradient.
-        * Use globalPos[0] and globalPos[1] to implement the high temperature lens with 380 K
-        * Hint : use Indices::temperatureIdx to address the initial values for temperature
-        */
+        values[Indices::temperatureIdx] = 283.0 + (aquiferDepth_ - globalPos[1])*0.03;
+        if (globalPos[0] > 20 - eps_ && globalPos[0] < 30 + eps_ && globalPos[1] > 5 - eps_ && globalPos[1] < 35 + eps_)
Ivan Buntic's avatar
Ivan Buntic committed
+            values[Indices::temperatureIdx] = 380.0;
+
         return values;
     }
 
diff -ruN exercises/exercise-basic/injection2pproblem.hh exercises/solution/exercise-basic/injection2pproblem.hh
--- exercises/exercise-basic/injection2pproblem.hh	2025-03-03 15:56:59.902625104 +0100
+++ exercises/solution/exercise-basic/injection2pproblem.hh	1970-01-01 01:00:00.000000000 +0100
@@ -1,211 +0,0 @@
-// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
-// vi: set et ts=4 sw=4 sts=4:
-//
-// SPDX-FileCopyrightInfo: Copyright © DuMux-Course contributors, see AUTHORS.md in root folder
-// SPDX-License-Identifier: GPL-3.0-or-later
-//
-/*!
- * \file
- *
- * \brief The two-phase porousmediumflow problem for exercise-basic
- */
-
-#ifndef DUMUX_EX_BASIC_PROBLEM_2P_HH
-#define DUMUX_EX_BASIC_PROBLEM_2P_HH
-
-#include <dumux/common/properties.hh>
-#include <dumux/common/boundarytypes.hh>
-#include <dumux/common/numeqvector.hh>
-#include <dumux/porousmediumflow/problem.hh>
-
-namespace Dumux {
-
-/*!
- * \ingroup TwoPModel
- * \ingroup ImplicitTestProblems
- * \brief Gas injection problem where a gas (here  nitrogen) is injected into a fully
- *        water saturated medium. During buoyancy driven upward migration the gas
- *        passes a high temperature area.
- *
- * The domain is sized 60 m times 40 m.
- *
- * For the mass conservation equation neumann boundary conditions are used on
- * the top, on the bottom and on the right of the domain, while dirichlet conditions
- * apply on the left boundary.
- *
- * Gas is injected at the right boundary from 7 m to 15 m at a rate of
- * 0.001 kg/(s m), the remaining neumann boundaries are no-flow
- * boundaries.
- *
- * At the dirichlet boundaries a hydrostatic pressure and a gas saturation of zero a
- *
- * This problem uses the \ref TwoPModel model.
- */
-template<class TypeTag>
-class Injection2PProblem : public PorousMediumFlowProblem<TypeTag>
-{
-    using ParentType = PorousMediumFlowProblem<TypeTag>;
-    using GridView = typename GetPropType<TypeTag, Properties::GridGeometry>::GridView;
-    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
-    using Indices = typename GetPropType<TypeTag, Properties::ModelTraits>::Indices;
-    using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
-    using BoundaryTypes = Dumux::BoundaryTypes<GetPropType<TypeTag, Properties::ModelTraits>::numEq()>;
-    using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
-    using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView;
-    using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
-    using NumEqVector = Dumux::NumEqVector<PrimaryVariables>;
-
-    static constexpr int dimWorld = GridView::dimensionworld;
-    using Element = typename GridView::template Codim<0>::Entity;
-    using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
-
-public:
-    Injection2PProblem(std::shared_ptr<const GridGeometry> gridGeometry)
-    : ParentType(gridGeometry)
-    {
Ivan Buntic's avatar
Ivan Buntic committed
-        // Initialize the tables of the fluid system
-        FluidSystem::init(/*tempMin=*/273.15,
-                /*tempMax=*/423.15,
-                /*numTemp=*/50,
-                /*pMin=*/0.0,
-                /*pMax=*/30e6,
-                /*numP=*/300);
-
Ivan Buntic's avatar
Ivan Buntic committed
-        // Name of the problem and output file
-        // getParam<TYPE>("GROUPNAME.PARAMNAME") reads and sets parameter PARAMNAME
-        // of type TYPE given in the group GROUPNAME from the input file
-        name_ = getParam<std::string>("Problem.Name");
Ivan Buntic's avatar
Ivan Buntic committed
-        // Depth of the aquifer, unit: m
-        aquiferDepth_ = getParam<Scalar>("Problem.AquiferDepth");
Ivan Buntic's avatar
Ivan Buntic committed
-        // The duration of the injection, unit: seconds
-        injectionDuration_ = getParam<Scalar>("Problem.InjectionDuration");
-    }
-
-
-    /*!
-     * \brief Returns the problem name
-     *
-     * This is used as a prefix for files generated by the simulation.
-     */
-    std::string name() const
-    { return name_+"-2p"; }
-
-
-    /*!
-     * \brief Specifies which kind of boundary condition should be
-     *        used for which equation on a given boundary segment.
-     *
-     * \param globalPos The position for which the bc type should be evaluated
-     */
-    BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
-    {
-        BoundaryTypes bcTypes;
-        // set the left of the domain (with the global position in "0 = x" direction as a Dirichlet boundary
-        if (globalPos[0] < eps_)
-            bcTypes.setAllDirichlet();
-        // set all other as Neumann boundaries
-        else
-            bcTypes.setAllNeumann();
-
-        return bcTypes;
-    }
-
-    /*!
-     * \brief Evaluates the boundary conditions for a Dirichlet
-     *        boundary segment
-     *
-     * \param globalPos The global position
-     */
-    PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const
-    {
-        return initialAtPos(globalPos);
-    }
-
-    /*!
-     * \brief Evaluate the boundary conditions for a neumann
-     *        boundary segment.
-     *
-     * \param globalPos The position of the integration point of the boundary segment.
-     */
-    NumEqVector neumannAtPos(const GlobalPosition &globalPos) const
-    {
-        // initialize values to zero, i.e. no-flow Neumann boundary conditions
-        // if we are inside the injection zone set inflow Neumann boundary conditions
-        // using < boundary + eps_ or > boundary - eps_ is safer for floating point comparisons
-        // than using <= or >= as it is robust with regard to imprecision introduced by rounding errors.
-        if (injectionActive() && onInjectionBoundary(globalPos))
-        {
Ivan Buntic's avatar
Ivan Buntic committed
-            // Inject nitrogen. Negative values mean injection
-            // unit: kg/(s*m^2)
-            values[Indices::conti0EqIdx + FluidSystem::N2Idx] = -1e-4;
-            values[Indices::conti0EqIdx + FluidSystem::H2OIdx] = 0.0;
-        }
-
-        return values;
-    }
-
-
-    /*!
-     * \brief Evaluate the source term for all phases within a given
-     *        sub-control-volume.
-     *
-     * \param globalPos The position for which the source term should be evaluated
-     */
-    NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
-    {
-        return NumEqVector(0.0);
-    }
-
-    /*!
-     * \brief Evaluate the initial value for a control volume.
-     *
-     * \param globalPos The position for which the initial condition should be evaluated
-     */
-    PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
-    {
-        PrimaryVariables values(0.0);
-
-        // get the water density at atmospheric conditions
-        const Scalar densityW = FluidSystem::H2O::liquidDensity(this->spatialParams().temperatureAtPos(globalPos), 1.0e5);
-
-        // assume an initially hydrostatic liquid pressure profile
-        // note: we subtract rho_w*g*h because g is defined negative
-        const Scalar pw = 1.0e5 - densityW*this->spatialParams().gravity(globalPos)[dimWorld-1]*(aquiferDepth_ - globalPos[dimWorld-1]);
-
-        values[Indices::pressureIdx] = pw;
-        values[Indices::saturationIdx] = 0.0;
-
-        return values;
-    }
-
-    // \}
-
Ivan Buntic's avatar
Ivan Buntic committed
-    //! Set the time for the time dependent boundary conditions (called from main)
-    void setTime(Scalar time)
-    { time_ = time; }
-
-    //! Return true if the injection is currently active
-    bool injectionActive() const
-    { return time_ < injectionDuration_; }
-
-    //! Return true if the given position is in the injection boundary region
-    bool onInjectionBoundary(const GlobalPosition& globalPos) const
-    {
-        return globalPos[1] < 15. + eps_
-            && globalPos[1] > 7. - eps_
-            && globalPos[0] > this->gridGeometry().bBoxMax()[0] - eps_;
-    }
-
-private:
-    static constexpr Scalar eps_ = 1e-6;
-    std::string name_; //! Problem name
-    Scalar aquiferDepth_; //! Depth of the aquifer in m
-    Scalar injectionDuration_; //! Duration of the injection in seconds
-    Scalar time_;
-};
-
-} //end namespace Dumux
-
-#endif
diff -ruN exercises/exercise-basic/params.input exercises/solution/exercise-basic/params.input
--- exercises/exercise-basic/params.input	2024-07-11 13:35:11.644137283 +0200
+++ exercises/solution/exercise-basic/params.input	2025-03-03 15:23:33.246567644 +0100
@@ -24,7 +24,7 @@
 Aquifer.Snr = 0.0
 
 # these parameters are only used in the nonisothermal model. Uncomment them for that
-#[Component]
-#SolidDensity = 2700 # solid density of granite
-#SolidThermalConductivity = 2.8 # solid thermal conducitivity of granite
-#SolidHeatCapacity = 790 # solid heat capacity of granite
+[Component]
+SolidDensity = 2700 # solid density of granite
+SolidThermalConductivity = 2.8 # solid thermal conducitivity of granite
+SolidHeatCapacity = 790 # solid heat capacity of granite
diff -ruN exercises/exercise-basic/properties2p.hh exercises/solution/exercise-basic/properties2p.hh
--- exercises/exercise-basic/properties2p.hh	2025-03-03 15:56:59.902625104 +0100
+++ exercises/solution/exercise-basic/properties2p.hh	1970-01-01 01:00:00.000000000 +0100
@@ -1,63 +0,0 @@
-// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
-// vi: set et ts=4 sw=4 sts=4:
-//
-// SPDX-FileCopyrightInfo: Copyright © DuMux-Course contributors, see AUTHORS.md in root folder
-// SPDX-License-Identifier: GPL-3.0-or-later
-//
-/*!
- * \file
- *
- * \brief The two-phase porousmediumflow properties file for exercise-basic
- */
-
-#ifndef DUMUX_EX_BASIC_PROPERTIES_2P_HH
-#define DUMUX_EX_BASIC_PROPERTIES_2P_HH
-
-#include <dune/grid/yaspgrid.hh>
-
-#include <dumux/discretization/cctpfa.hh>
-#include <dumux/porousmediumflow/2p/model.hh>
-#include <dumux/material/fluidsystems/h2on2.hh>
-
-#include "injection2pproblem.hh"
-#include "injection2pspatialparams.hh"
-
-namespace Dumux::Properties {
-
-// define the TypeTag for this problem with a cell-centered two-point flux approximation spatial discretization.
-// Create new type tags
-namespace TTag {
-struct Injection2p { using InheritsFrom = std::tuple<TwoP>; };
-struct Injection2pCC { using InheritsFrom = std::tuple<Injection2p, CCTpfaModel>; };
-} // end namespace TTag
-
-// Set the grid type
-template<class TypeTag>
-struct Grid<TypeTag, TTag::Injection2p> { using type = Dune::YaspGrid<2>; };
-
-// Set the problem property
-template<class TypeTag>
-struct Problem<TypeTag, TTag::Injection2p> { using type = Injection2PProblem<TypeTag>; };
-
-// Set the spatial parameters
-template<class TypeTag>
-struct SpatialParams<TypeTag, TTag::Injection2p>
-{
-private:
-    using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
-    using Scalar = GetPropType<TypeTag, Properties::Scalar>;
-public:
-    using type = InjectionSpatialParams<GridGeometry, Scalar>;
-};
-
-// Set fluid configuration
-template<class TypeTag>
-struct FluidSystem<TypeTag, TTag::Injection2p>
-{
-    using type = FluidSystems::H2ON2< GetPropType<TypeTag, Properties::Scalar>,
-                                      FluidSystems::H2ON2DefaultPolicy</*fastButSimplifiedRelations=*/ true> >;
-};
-
-} // end namespace Dumux::Properties
-
-#endif
diff -ruN exercises/exercise-basic/properties2pni.hh exercises/solution/exercise-basic/properties2pni.hh
--- exercises/exercise-basic/properties2pni.hh	2025-03-03 15:56:59.902625104 +0100
+++ exercises/solution/exercise-basic/properties2pni.hh	2025-03-03 15:56:59.909624983 +0100
@@ -24,13 +24,9 @@
 
 namespace Dumux::Properties {
 
- /*!
-* TODO:dumux-course-task 4
-* Inherit from the TwoPNI model instead of TwoP here
-*/
 // Create new type tags
 namespace TTag {
-struct Injection2pNITypeTag { using InheritsFrom = std::tuple<TwoP>; };
+struct Injection2pNITypeTag { using InheritsFrom = std::tuple<TwoPNI>; };
 struct Injection2pNICC { using InheritsFrom = std::tuple<Injection2pNITypeTag, CCTpfaModel>; };
 } // end namespace TTag
 
diff -ruN exercises/exercise-basic/README.md exercises/solution/exercise-basic/README.md
--- exercises/exercise-basic/README.md	2025-03-03 15:23:33.239567801 +0100
+++ exercises/solution/exercise-basic/README.md	1970-01-01 01:00:00.000000000 +0100
@@ -1,94 +0,0 @@
-# Exercise Basics (DuMuX course)
-
-## Problem set-up
-
-N$_2$ is injected in an aquifer previously saturated with water with an injection rate of 0.0001 kg/(s*m$^2$).
-The aquifer is situated 2700 m below sea level and the domain size is 60 m x 40 m. It consists of two layers, a moderately permeable one ($\Omega_1$) and a lower permeable one ($\Omega_2$).
-
-<img src="https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/raw/master/slides/img/exercise_basic_setup.png" width="1000">
-
-## Preparing the exercise
-
-* Navigate to the directory `dumux-course/exercises/exercise-basic`
-
Ivan Buntic's avatar
Ivan Buntic committed
-This exercise deals with two problems: a two-phase immiscible problem (__2p__) and a two-phase non-isothermal problem (__2pni__). They both set up the same scenario with the difference that the 2pni model introduces an extra energy equation.
-## Task 1: Getting familiar with the code
-
-Locate all the files you will need for this exercise
-* The __main file__ for the __2p__ problem : `2pmain.cc`
-* The __problem file__ for the __2p__ problem: `injection2pproblem.hh`
Ivan Buntic's avatar
Ivan Buntic committed
-* The __problem file__ for the __2pni__ problem: `injection2pniproblem.hh`
-* The __properties file__ for the __2p__ problem: `properties2p.hh`
Ivan Buntic's avatar
Ivan Buntic committed
-* The __properties file__ for the __2pni__ problem: `properties2pni.hh`
-* The shared __spatial parameters file__: `injection2pspatialparams.hh`
-* The shared __input file__: `params.input`
-
-## Task 2: Compiling and running an executable
-
-* Change to the build-directory
-
-```bash
-cd ../../build-cmake/exercises/exercise-basic
-```
-
Ivan Buntic's avatar
Ivan Buntic committed
-* Compile the executable `exercise_basic_2p`
Ivan Buntic's avatar
Ivan Buntic committed
-make exercise_basic_2p
Ivan Buntic's avatar
Ivan Buntic committed
-* Execute the problem and inspect the result
-
-```bash
-./exercise_basic_2p params.input
-```
-
-* you can look at the results with paraview
-
-```bash
Ivan Buntic's avatar
Ivan Buntic committed
-paraview injection-2p.pvd
-## Task 3: Setting up a new executable (for a non-isothermal simulation)
-
-* Copy the main file `2pmain.cc` and rename it to `2pnimain.cc`
-* In  `2pnimain.cc`, include the header `properties2pni.hh` instead of `properties2p.hh`.
-* In  `2pnimain.cc`, change `Injection2pCC` to `Injection2pNICC` in the line `using TypeTag = Properties::TTag::Injection2pNICC;`
-* Add a new executable in `CMakeLists.txt` by adding the lines
-
-```cmake
-# the two-phase non-isothermal simulation program
-dumux_add_test(NAME exercise_basic_2pni
-               SOURCES 2pnimain.cc)
Ivan Buntic's avatar
Ivan Buntic committed
-* In the respective build-cmake folder, test that everything compiles without error
-
-```bash
-make # should rerun cmake
-make exercise_basic_2pni # builds new executable
-```
-
-## Task 4: Setting up a non-isothermal __2pni__ test problem
-
-* Open the files `injection2pniproblem.hh` and `properties2pni.hh`.
-These are copies of the `injection2pproblem.hh` and `properties2p.hh` files, with some useful comments on how to implement a non-isothermal model.
-Look for comments containing
-
-```c++
-// TODO: dumux-course-task 4
-```
-
-* The following set-up should be realized:
-
Ivan Buntic's avatar
Ivan Buntic committed
-  __Initial conditions:__ For the primary variable __temperature__ use a varying temperature of <br/>
-$`\displaystyle T(y) = 283~\text{K} + 0.03~\frac{\text{K}}{\text{m}} \cdot \left( d_\text{aquifer} - y \right)`$, <br/>
-with the aquifer depth
Ivan Buntic's avatar
Ivan Buntic committed
-$\displaystyle d_\text{aquifer}=2700~\text{m}$. Additionally, add a subdomain (20 < x < 30, 5 < y < 35), where you assign a constant initial temperature of 380 K.
Ivan Buntic's avatar
Ivan Buntic committed
-  __Boundary conditions:__ Dirichlet boundary conditions at the left boundary with the same temperature gradient as in the initial conditions. For the Neumann conditions, assign an energy flux at the injection point of N$_2$ and no-flow conditions for the energy balance to the rest of the boundaries.
-<img src="https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/raw/master/slides/img/exercise_basic_nonisothermal.png" width="800">
-
-The non-isothermal model requires additional parameters like the thermal conductivity of the solid component. They are already implemented and set in `params.input`, you just need to _uncomment_ them.