Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
---
title: Setting up a test problem / application and using the build system (CMake)
---
# Test Problems / Applications
## Test Problems / Applications
A test problem / application consists of:
* A property file (properties.hh)
* a problem file (often problem.hh)
* a spatial parameters file (often spatialparams.hh)
* an input file (often params.input)
* a main file (often main.cc)
* a build system file (CMakeLists.txt)
## Example for an immiscible two phase injection test case
Mass balance:
$\begin{equation}
\phi \frac{\partial \varrho_\alpha S_\alpha}{\partial t}
-
\text{div} \left\{ \boldsymbol{v}_\alpha \right\}
-
q_\alpha = 0
\end{equation}$
Momentum balance:
$\begin{equation}
\boldsymbol{v}_\alpha = \varrho_\alpha \frac{k_{r\alpha}}{\mu_\alpha} \mathbf{K} \left(\textbf{grad}\, p_\alpha - \varrho_{\alpha} \mathbf{g} \right)
\end{equation}$
# The properties file (properties.hh)
## The properties file
Lists all the properties and dependencies of the current problem. The injection test case inherits from the 2p model:
```cpp
namespace Dumux::Properties {
// define the TypeTag for this problem with a cell-centered two-point flux approximation spatial discretization.
// Create new type tags
namespace TTag {
struct Injection2p { using InheritsFrom = std::tuple<TwoP>; };
} // end namespace TTag
// Include all necessary properties within the namespace Dumux::Properties
} // end namespace Dumux::Properties
```
## The properties file
Often specifies the discretization method:
```cpp
namespace Dumux::Properties {
// define the TypeTag for this problem with a cell-centered two-point flux approximation spatial discretization.
// Create new type tags
namespace TTag {
struct Injection2p { using InheritsFrom = std::tuple<TwoP>; };
struct Injection2pCC { using InheritsFrom = std::tuple<Injection2p, CCTpfaModel>; };
} // end namespace TTag
} // end namespace Dumux::Properties
```
## The properties file
The grid type:
```cpp
// Set the grid type
template<class TypeTag>
struct Grid<TypeTag, TTag::Injection2p> { using type = Dune::YaspGrid<2>; };
```
## The properties file
The problem type:
```cpp
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::Injection2p> { using type = InjectionProblem2P<TypeTag>; };
```
## The properties file
The spatial parameters:
```cpp
// Set the spatial parameters
template<class TypeTag>
struct SpatialParams<TypeTag, TTag::Injection2p> {
private:
using FVGridGeometry = GetPropType<TypeTag, Properties::FVGridGeometry>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
using type = InjectionSpatialParams<FVGridGeometry, Scalar>; };
```
## The properties file
The fluidsystem:
```cpp
// Set fluid configuration
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::Injection2p> { using type = FluidSystems::H2ON2<GetPropType
<TypeTag, Properties::Scalar>, FluidSystems::H2ON2DefaultPolicy</*fastButSimplifiedRelations=*/true>>; };
```
## The properties file
The property file can also incorporate many more properties depending on the utilized model and test case.
# The problem file (problem.hh)
## The problem file
A problem in DuMu$^\mathsf{x}$ implements a specific model scenario:
```cpp
template<class TypeTag>
class InjectionProblem2P : public PorousMediumFlowProblem<TypeTag>
{
// Details of the model scenario (BoundaryConditions, InitialConditions, etc.)
}
```
## The problem file
Defines boundary conditions:
```cpp
BoundaryTypes boundaryTypesAtPos(const GlobalPosition &globalPos) const
{
BoundaryTypes bcTypes;
// set the left of the domain (with the global position in "0 = x" direction as a Dirichlet boundary
if (globalPos[0] < eps_)
bcTypes.setAllDirichlet();
// set all other as Neumann boundaries
else
bcTypes.setAllNeumann();
return bcTypes;
}
```
## The problem file
Evaluates boundary conditions:
```cpp
PrimaryVariables dirichletAtPos(const GlobalPosition &globalPos) const
{
return initialAtPos(globalPos);
}
```
## The problem file
```cpp
PrimaryVariables neumannAtPos(const GlobalPosition &globalPos) const
{
// initialize values to zero, i.e. no-flow Neumann boundary conditions
PrimaryVariables values(0.0);
// using < boundary + eps_ or > boundary - eps_ is safer for floating point comparisons
// than using <= or >= as it is robust with regard to imprecision introduced by rounding errors.
if (time_ < injectionDuration_ && globalPos[1] < 15 + eps_ && globalPos[1] > 7 - eps_
&& globalPos[0] > 0.9*this->fvGridGeometry().bBoxMax()[0])
{
// inject nitrogen. Negative values mean injection
// units kg/(s*m^2)
values[Indices::conti0EqIdx + FluidSystem::N2Idx] = -1e-4;
values[Indices::conti0EqIdx + FluidSystem::H2OIdx] = 0.0;
}
return values;
}
```
## The problem file
Defines initial conditions
```cpp
PrimaryVariables initialAtPos(const GlobalPosition &globalPos) const
{
PrimaryVariables values(0.0);
// get the water density at atmospheric conditions
const Scalar densityW = FluidSystem::H2O::liquidDensity(temperature(), 1.0e5);
// assume an initially hydrostatic liquid pressure profile
const Scalar pw = 1.0e5 - densityW*this->gravity()[dimWorld-1]*(aquiferDepth_ - globalPos[dimWorld-1]);
values[Indices::pressureIdx] = pw;
values[Indices::saturationIdx] = 0.0;
return values;
}
```
## The problem file
Defines source/sink terms
```cpp
NumEqVector sourceAtPos(const GlobalPosition &globalPos) const
{
NumEqVector source(0.0)
// The units must be according to either using mole or mass fractions.
// (mole/(m^3*s) or kg/(m^3*s))
// extract nitrogen at specific point. Positive values mean extraction.
if (globalPos[0] < 5 + eps_ && globalPos[0] > 4 - eps_ && globalPos[1] < 5 + eps_ && globalPos[1] > 4 - eps_)
source[Indices::conti0EqIdx + FluidSystem::N2Idx] = 1e-6;
return source;
}
```
# The spatial parameters (spatialparams.hh)
## The spatial parameters
The spatialparams define spatial parameters of the porous material.
## The spatial parameters
Permeability:
```cpp
PermeabilityType permeabilityAtPos(const GlobalPosition& globalPos) const
{
// here, either aquitard or aquifer permeability are returned, depending on the global position
if (isInAquitard_(globalPos))
return aquitardK_;
return aquiferK_;
}
private:
// provides a convenient way distinguishing whether a given location is inside the aquitard
bool isInAquitard_(const GlobalPosition &globalPos) const
{
// globalPos[dimWorld-1] is the y direction for 2D grids or the z direction for 3D grids
return globalPos[dimWorld-1] > aquiferHeightFromBottom_ + eps_;
}
```
## The spatial parameters
Porosity:
```cpp
Scalar porosityAtPos(const GlobalPosition& globalPos) const
{
// here, either aquitard or aquifer porosity are returned
if (isInAquitard_(globalPos))
return aquitardPorosity_;
return aquiferPorosity_;
}
```
## The spatial parameters
Capillary pressure - saturation relationship:
More information in a later lecture on the materialsystem!
```cpp
const auto fluidMatrixInteractionAtPos(const GlobalPosition& globalPos) const
{
if (isInAquitard_(globalPos))
return makeFluidMatrixInteraction(aquitardPcKrSwCurve_);
return makeFluidMatrixInteraction(aquiferPcKrSwCurve_);
}
```
## The spatial parameters
Temperature:
```cpp
Scalar temperatureAtPos(const GlobalPosition& globalPos) const
{
// constant temperature of 20°C
return 273.15 + 20.0;
}
```
# The input file (*.input)
## The input file
DUNE INI syntax:
```cpp
[Grid]
LowerLeft = 0 0
UpperRight = 60 40
Cells = 24 16
[Problem]
Name = test
```
Input files are specified as arguments to the executable
`./myexecutable params.input`
## The input file
If no input file is given it defaults to the file `params.input` or `myexecutablename.input`
Parameters can be overwritten through the command line like via:
`./executable –Problem.Name myNewName`
# The main source file (*.cc)
## The main source file
* Each problem has a specific main file (`test_name.cc` or `main.cc`) which sets up the program structure and calls assembler and solvers to assemble and solve the PDEs.
* Depending on the complexity of the problem the main file can be either set up to solve a linear problem, a non-linear problem and stationary as well as instationary problems.
* The main file usually includes the problem, the solvers, the assembler, the VTK output module and the gridmanager.
## The main source file
Common structure for most main files:
```cpp
// define the type tag for this problem
using TypeTag = Properties::TTag::OnePIncompressible;
// maybe initialize MPI and/or multithreading backend
const auto& mpiHelper = Dune::MPIHelper::instance();
// print dumux start message
if (mpiHelper.rank() == 0)
DumuxMessage::print(/*firstCall=*/true);
// parse command line arguments and input file
Parameters::init(argc, argv);
```
## The main source file
```cpp
// try to create a grid (from the given grid file or the input file)
GridManager<GetPropType<TypeTag, Properties::Grid>> gridManager;
gridManager.init();
// we compute on the leaf grid view
const auto& leafGridView = gridManager.grid().leafGridView();
// create the finite volume grid geometry
using GridGeometry = GetPropType<TypeTag, Properties::GridGeometry>;
auto gridGeometry = std::make_shared<GridGeometry>(leafGridView);
// the problem (initial and boundary conditions)
using Problem = GetPropType<TypeTag, Properties::Problem>;
auto problem = std::make_shared<Problem>(gridGeometry);
```
## The main source file
```cpp
// the solution vector
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
SolutionVector x(gridGeometry->numDofs());
// the grid variables
using GridVariables = GetPropType<TypeTag, Properties::GridVariables>;
auto gridVariables = std::make_shared<GridVariables>(problem, gridGeometry);
gridVariables->init(x);
// initialize the vtk output module
VtkOutputModule<GridVariables, SolutionVector> vtkWriter(*gridVariables, x, problem->name());
using VelocityOutput = GetPropType<TypeTag, Properties::VelocityOutput>;
vtkWriter.addVelocityOutput(std::make_shared<VelocityOutput>(*gridVariables));
using IOFields = GetPropType<TypeTag, Properties::IOFields>;
IOFields::initOutputModule(vtkWriter); //!< Add model specific output fields
```
## The main source file
Differences for various problem cases:
* Stationary linear problem
* Stationary non-linear problem
* Instationary non-linear problem
## The main source file
A stationary linear problem:
```cpp
// the assembler for stationary problems
using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables);
// the linear solver
using LinearSolver = ILUBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>,
LinearAlgebraTraitsFromAssembler<Assembler>>;
auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
// the discretization matrices for stationary linear problems
using JacobianMatrix = GetPropType<TypeTag, Properties::JacobianMatrix>;
auto A = std::make_shared<JacobianMatrix>();
auto r = std::make_shared<SolutionVector>();
assembler->setLinearSystem(A, r);
assembler->assembleJacobianAndResidual(x);
```
## The main source file
```cpp
// we solve Ax = -r to save update and copy
(*r) *= -1.0;
linearSolver->solve(*A, x, *r);
// the grid variables need to be up to date for subsequent output
gridVariables->update(x);
```
## The main source file
A stationary non-linear problem:
```cpp
using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables);
// the linear solver
using LinearSolver = ILUBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>,
LinearAlgebraTraitsFromAssembler<Assembler>>;
auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
// the non-linear solver
using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
NewtonSolver nonLinearSolver(assembler, linearSolver);
// linearize & solve
nonLinearSolver.solve(x);
```
## The main source file
An instationary non-linear problem:
```cpp
// instantiate time loop
auto timeLoop = std::make_shared<TimeLoop<Scalar>(0.0, dt, tEnd);
timeLoop->setMaxTimeStepSize(maxDt);
using Assembler = FVAssembler<TypeTag, DiffMethod::numeric>;
auto assembler = std::make_shared<Assembler>(problem, gridGeometry, gridVariables, timeLoop);
// the linear solver
using LinearSolver = ILUBiCGSTABIstlSolver<LinearSolverTraits<GridGeometry>,
LinearAlgebraTraitsFromAssembler<Assembler>>;
auto linearSolver = std::make_shared<LinearSolver>(gridGeometry->gridView(), gridGeometry->dofMapper());
// the non-linear solver
using NewtonSolver = Dumux::NewtonSolver<Assembler, LinearSolver>;
NewtonSolver nonLinearSolver(assembler, linearSolver);
```
## The main source file
```cpp
// time loop
timeLoop->start(); do
{
// Calculate solution within each time step
} while (!timeLoop->finished());
```
## The main source file
The timeloop for the instationary non-linear problem:
```cpp
// time loop
timeLoop->start(); do
{
// set previous solution for storage evaluations
assembler->setPreviousSolution(xOld);
// linearize & solve
nonLinearSolver.solve(x, *timeLoop);
// make the new solution the old solution
xOld = x;
gridVariables->advanceTimeStep();
```
## The main source file
```cpp
// advance to the time loop to the next step
timeLoop->advanceTimeStep();
// report statistics of this time step
timeLoop->reportTimeStep();
// set new dt as suggested by the newton solver
timeLoop->setTimeStepSize(nonLinearSolver.suggestTimeStepSize(timeLoop->timeStepSize()));
} while (!timeLoop->finished());
timeLoop->finalize(leafGridView.comm());
```
# Build system (CMakeLists.txt)
## Build system - what is CMake?
* Open source build system tool developed by KITware.
* Offers a one-tool-solution to all building tasks, like configuring, building, linking, testing and packaging.
* Is a build system generator: It supports a set of backends called generators.
* Is portable and supports cross-platform compilation.
* Is controlled by ONE rather simple language.
* Every directory in a project contains a file called `CMakeLists.txt`, which is written in the CMake language. You can think of these as a distributed configure script. Upon configure, the top-level `CMakeLists.txt` is executed.
## Build system - configuring
* Configure build time compiler parameters / linking information.
* Create „targets“ that can be build to create executables.
## Build system - configuring
* Build with the script `dune-common/bin/dunecontrol <options>` which takes care of all dependencies and modular dune structure.
* Option `all`: build all libraries and executables.
* Option `--opts=<optionfile.opts>` specify e.g. compiler flags, for DuMu$^\mathsf{x}$ the `optionfile` is `dumux/cmake.opts`.
* Option `--build-dir=<build directory>` specify path for out-of-source build.
* Default: every module contains its own build directory `build-cmake/`.
* You have to reconfigure (possibly deleting all build directories first) whenever a dependency changes or a Dune library is updated.
`./dune-common/bin/dunecontrol --opts=dumux/cmake.opts all`
## Build system - important basic commands
* Use `add_subdirectory` for recursively adding subdirectories.
* The subdirectory has to contain a `CMakeLists.txt` file (can be empty).
* Executables are added via `add_executable(<name> source1 [source2 ...])`.
* Tests are added via `dune_add_test(...)` which also add a test executable to the test suite.
* Symlinks can be added via `dune_symlink_to_source_files(FILES file1 [file2 ...])`.
## Build system
Simplest incorporation of a test by defining name, source file and command line arguments:
```cmake
dune_add_test(NAME test_2p_incompressible_box
SOURCES test_2p_fv.cc
CMD_ARGS test_2p.input)
```
## Build system
Add extra compile definitions and commands:
```cmake
dune_add_test(NAME test_2p_incompressible_box
SOURCES test_2p_fv.cc
COMPILE_DEFINITIONS TYPETAG=TwoPIncompressibleBox
COMMAND ${CMAKE_SOURCE_DIR}/bin/testing/runtest.py
CMD_ARGS --script fuzzy
--files ${CMAKE_SOURCE_DIR}/test/references/lensbox-reference.vtu
${CMAKE_CURRENT_BINARY_DIR}/2p_box-00007.vtu
--command "${CMAKE_CURRENT_BINARY_DIR}/test_2p_incompressible_box
test_2p.input -Problem.Name 2p_box")
```
## Build system
Extra: Create linked parameter file in `build-cmake` folder, separately add executable and set compile defintions for an executable:
```cmake
dune_symlink_to_source_files(FILES "params.input")
# using tpfa
add_executable(test_2p_incompressible_tpfa EXCLUDE_FROM_ALL main.cc)
target_compile_definitions(test_2p_incompressible_tpfa PUBLIC TYPETAG=TwoPIncompressibleTpfa)
```
## Build system
Instead of the box discretization use the tpfa discretization:
```cmake
dumux_add_test(NAME test_2p_incompressible_tpfa
TARGET test_2p_incompressible_tpfa
LABELS porousmediumflow 2p
COMMAND ${CMAKE_SOURCE_DIR}/bin/testing/runtest.py
CMD_ARGS --script fuzzy
--files ${CMAKE_SOURCE_DIR}/test/references/test_2p_incompressible_cc-reference.vtu
${CMAKE_CURRENT_BINARY_DIR}/test_2p_incompressible_tpfa-00007.vtu
--command "${CMAKE_CURRENT_BINARY_DIR}/test_2p_incompressible_tpfa params.input -Problem.Name test_2p_incompressible_tpfa")
```
## Build system
Important basic commands:
* See also Dune build system documentation on [https://www.dune-project.org/sphinx/core/](https://www.dune-project.org/sphinx/core/) for a comprehensive CMake online documentation.
# Parallelism
## Distributed memory parallelism with MPI
* MPI stands for Message Passing Interface
* Main idea is the concept of domain decomposition
* Each local subdomain is solved on an individual process(rank)
* MPI manages the communication between the ranks
* Most solvers in DuMu$^\mathsf{x}$ are capable of parallel solving
## Distributed memory parallelism with MPI
Run with:
```cpp
mpirun -np [n_cores] [executable_name]
```
Handling results:
* Each rank creates its own `*.vtu`/`*.vtp` file.
* These are combined into `*.pvtu`/`*.pvtp` files for each time step.
* A normal `*.pvd` file is created from the `*.pvtu`/`*.pvtp` files.
## Shared-memory parallelism and multi-threaded applications
* Dumux can exploit parallelism with the shared memory model
* Used in the Dumux::FVAssembler by default to assemble the residual and stiffness matrix
* Is enabled when a multi-threading backend is found
* Backend is selected by `CMAKE` during configuration and stored in `DUMUX_MULTITHREADING_BACKEND`
* Possible examples are `OpenMP`, `TBB`, C++ parallel algorithms and `Kokkos`
* Can be turned of in `params.input` with:
```cpp
[Assembly]
Multithreading = false
```
* Important for working on clusters: Number of threads can also be restricted via manipulating the environment variable `DUMUX_NUM_THREADS=2 ./executable`
# Exercises
## Exercises:
Exercise about setting boundary conditions, the problem file etc:
* Go to [https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/tree/master/exercises/exercise-basic](https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/tree/master/exercises/exercise-basic) and check out the README
Exercise for the main-files:
* Go to [https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/tree/master/exercises/exercise-mainfile](https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/tree/master/exercises/exercise-basic) and check out the README