Newer
Older
---
title: Modelling porous medium modification </br><small>Induced Calcite Precipitation</small>
---
# SFB Project Area C: Biomineralization
## What is Induced Calcite Precipitation (ICP)?
Microbes change the chemistry in a way that promotes the precipitation of calcite.
## What is ICP?
<img src="img/biomin_intro-microbes.png"/></br>
<small>Credit: James Connolly, Montana State University.</small>
## What is ICP?
:::::: {.columns}
::: {.column width=75%}
<video controls>
<source src="img/biomin_MIP-timelapse.ogg"/>
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
</video>
</br>
<small>Credit: James Connolly, Montana State University.</small>
:::
::: {.column width=25%}
* Biofilm (green) is alive
* Flow is induced, biofilm moves
* Reactions occur
* Calcite precipitates (white)
* Biofilm dies slowly
:::
::::::
## Results of ICP
Segmented CT image of a glass-bead column mineralized by ICP
:::::: {.columns}
::: {.column width=40%}
<img src="img/biomin_introColumns.png"/>
:::
::: {.column width=60%}
<img src="img/biomin_introSegmented.png"/>
:::
::::::
<small>Credit: Johannes Hommel, University of Stuttgart</small>
## Why investigate ICP?
::::: {.columns}
::: {.column width=50%}
<img src="img/biomin_introCementedSand.jpg"/>
<small>Mineralized sand, photo by Johannes Hommel, University of Stuttgart.</small>
:::
::: {.column width=50%}
<img src="img/biomin_introPoroPermFelix.png"/>
<small>Porosity-Permeability changes observed by Felix Weinhardt, University of Stuttgart.</small>
:::
::::::
## Why investigate ICP?
Applications in which a porous medium should be cemented in-situ, e.g. sealing, leakage mitigation, creating subsurface barries, reducing erosion, or stabilizing soil.
Main desired effects of ICP in those applications are:
- reduce flow (reduce $K$ and $k_r$, increase $p_c$)
- increase mechanical strength
# Model concept
## Model concept: Relevant processes
:::::: {.columns}
::: {.column width=50%}
<img src="img/biomin_model-2p.png"/>
<small>(modified after Ebigbo et al., WRR 2012)</small>
:::
::: {.column width=50%}
- Two-phase transport
:::
::::::
## Model concept: Relevant processes
:::::: {.columns}
::: {.column width=50%}
<img src="img/biomin_model-2pnc.png"/>
<small>(modified after Ebigbo et al., WRR 2012)</small>
:::
::: {.column width=50%}
- Two-phase, multi-component transport
:::
::::::
## Model concept: Relevant processes
:::::: {.columns}
::: {.column width=50%}
<img src="img/biomin_model-microbes.png"/>
<small>(modified after Ebigbo et al., WRR 2012)</small>
:::
::: {.column width=50%}
**For this exercise:**
Neglecting microbial growth and decay, attachment and detachment
- Biomass (S. pasteurii)
- growth / decay
- attachment / detachment
:::
::::::
## Model concept: Relevant processes
:::::: {.columns}
::: {.column width=50%}
<img src="img/biomin_model-urea.png"/>
<small>(modified after Ebigbo et al., WRR 2012)</small>
:::
::: {.column width=50%}
- Urea hydrolysis
$$
\begin{aligned}
\underset{\text{urea}}{CO(NH_2)_2} + 2 H_2O
\overset{\text{urease}}{\rightarrow}
\\
\underset{\text{ammonia}}{2NH_3} + \underset{\text{carbonic acid}}{H_2CO_3}
\end{aligned}
$$
:::
::::::
## MICP: Main reactions
Here: Ureolytic microbes produce the enzyme urease (MICP)
$$
CO(NH_2)_2 + 2 H_2O + Ca^{2+} \rightarrow 2 NH_4^+ + CaCO_3
$$
Different reactions in detail:
<!-- \! creates negative spacing to fit the two columns -->
$$
\begin{array}{lr}
CO(NH_2)_2 + 2 H_2O \rightarrow 2 NH_3 + H_2CO_3 \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
& \text{ureolysis} \\
H_2CO_3 \leftrightarrow HCO_3^- + H^+ & \text{dissociation of carbonic acid} \\
HCO_3^- \leftrightarrow CO_3^{2-} + H^+ & \text{dissociation of bicarbonate ion} \\
2 NH_4^+ \leftrightarrow 2 NH_3 + 2 H^+ & \text{dissociation of ammonia} \\
Ca^{2+} + CO_3^{2-} \leftrightarrow CaCO_3 \downarrow & \text{calcite precipitation/dissolution}
\end{array}
$$
## Model concept: Relevant processes
:::::: {.columns}
::: {.column width=50%}
<img src="img/biomin_model-precipitation.png"/>
<small>(modified after Ebigbo et al., WRR 2012)</small>
:::
::: {.column width=50%}
- Precipitation and dissolution of calcite
$$
\mathrm{
\underset{\text{calcium}}{Ca^{2+}} + \underset{\text{carbonate}}{CO_3^{2-}}
\leftrightarrow \underset{\text{calcite}}{CaCO_3 \downarrow}
}
$$
:::
::::::
## Model concept: Relevant processes
:::::: {.columns}
::: {.column width=45%}
<img src="img/biomin_model-clogging.png"/>
<small>(modified after Ebigbo et al., WRR 2012)</small>
:::
::: {.column width=55%}
* Clogging: Reduction of porosity
$$
\phi = \phi_0 - \phi_\text{biofilm} - \phi_\text{calcite}
$$
* and reduction in permeability: Kozeny-Carman relation
$$
K = K_0 \left( \frac{1-\phi_0}{1-\phi} \right)^2 \left( \frac{\phi}{\phi_0} \right)^3
$$
or the Power Law
:::
::::::
# Equations
## Balance Equations
:::incremental
* Mass balance equation of components
$$
\Sigma_\alpha \frac{\partial}{\partial t}
(\phi \rho_\alpha x^\kappa_\alpha S_\alpha)
+ \nabla \cdot ( \rho_\alpha x^\kappa_\alpha \mathbf{v}_\alpha )
- \nabla \cdot ( \rho_\alpha \mathbf{D}^\kappa_{\alpha;\text{pm}} \nabla x^\kappa_\alpha )
= q^\kappa
$$
* Mass balance for the immobile components / solid phases:
$$\frac{\partial}{\partial t}(\rho_\varphi \phi_\varphi) = q^\varphi$$
:::
## Overall procedure of implementing chemical reactions in DuMu$^\mathsf{x}$:
1. Chemical equation calculate equilibrium/kinetic reaction rate e.g. $r_\text{urea}$
2. Reaction rate set component source/sink term e.g. $q^\varphi$ depending on and chemical reaction
## Sources & Sinks:
**For this exercise:**
* Neglecting microbial growth and decay, attachment and detachment as we assume a fixed biofilm for simplicity!
* We also assume that the rate of precipitation is equal to the rate of ureolysis, saving the work of detailed geochemistry calculations for the sake of both simplicity and faster run times.
## Sources & Sinks:
$$
\begin{aligned}
&\text{Urea:} & q^{\text{urea}} &= -r_\text{urea} \\
&\text{Calcium:} & q^{\mathrm{Ca}^2+} &= -r_\text{precip} \\
&\text{Total carbon:}& q^{\mathrm{C}_\text{tot}^+} &= r_\text{urea} - r_\text{precip} \\
&\text{Calcite:} & q^{\mathrm{C}} &= r_\text{precip}
\end{aligned}
$$
## Sources & Sinks:
<!-- use creates negative spacing from \! to align equations -->
$$
\begin{aligned}
\qquad\qquad & \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
\text{Precipitation rate:} \\
r_\text{precip} &= f\; \left( A_\text{interface}, \Omega = \frac{\left[\mathrm{Ca}^{2+}\right]\left[CO_3^{2-}\right]}{K_\text{sp}}, T \right)
\\
\qquad\qquad & \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
\text{For this exercise:} \\
r_\text{precip} &= r_\text{urea}
\\
\qquad\qquad & \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
\text{Ureolysis rate:} \\
r_\text{urea} &= k_\mathrm{urease}^\mathrm{m} k_{\mathrm{urease}, \text{biofilm}} \left(\rho_\text{biofilm} \phi_\text{biofilm}\right) \frac{m_\text{urea}}{K_\text{urea} + m_\text{urea}}
\end{aligned}
$$
## Supplementary Equation:
* Updating porosity and permeability
$$
\begin{aligned}
\phi &= \phi_0 - \Sigma_\varphi \phi_\varphi
\\
K &= K_0 \left(\frac{1-\phi_0}{1-\phi}\right)^2 \left(\frac{\phi}{\phi_0}\right)^3
\\
\text{or}&
\\
K &= K_0 \left( \frac{1-\phi_0}{1-\phi} \right)^\eta
\end{aligned}
$$
## Specific Implementations
* Implement reactive sources and sinks, calling a seperate chemistry file
```cpp
#include "chemistry/simplebiominreactions.hh" // chemical reactions
…
using Chemistry = typename Dumux::SimpleBiominReactions<NumEqVector,
VolumeVariables>;
…
```
## Specific Implementations
* Implement reactive sources and sinks, calling a seperate chemistry file
```cpp
NumEqVector source(const Element& element,
const FVElementGeometry& fvGeometry,
const ElementVolumeVariables& elemVolVars,
const SubControlVolume& scv) const
{
NumEqVector source(0.0);
Chemistry chemistry;
const auto& volVars = elemVolVars[scv];
chemistry.reactionSource(source, volVars);
return source;
}
```
## Specific Implementations
* Update porosity in dumux/material/fluidmatrixinteractions/porosityprecipitation.hh
```cpp
…
auto priVars = evalSolution(element, element.geometry(), elemSol, scv.center());
Scalar sumPrecipitates = 0.0;
for (unsigned int solidPhaseIdx = 0; solidPhaseIdx < numSolidPhases; ++solidPhaseIdx)
sumPrecipitates += priVars[numComp + solidPhaseIdx];
using std::max;
return max(minPoro, refPoro - sumPrecipitates);
…
```
## Specific Implementations
* Update permeability in /material/fluidmatrixinteractions/permeabilitykozenycarman.hh
```cpp
template<class Scalar>
PermeabilityType evaluatePermeability(PermeabilityType refPerm,
Scalar refPoro,
Scalar poro) const
{
using std::pow;
auto factor = pow((1.0 - refPoro)/(1.0 - poro), 2)
* pow(poro/refPoro, 3);
refPerm *= factor;
return refPerm;
}
```
# Biomineralization exercise
## Exercise
:::::: {.columns}
::: {.column width=45%}
Academic problem setup
* 2 aquifers with sealing aquitard
* Upper aquifer: "drinking water"
* Lower aquifer: "$CO_2$ storage"
* Problem:
* Leakage pathway
* Stored $CO_2$ would migrate to drinking water aquifer!
* Biomineralization injection could "seal" the leakage pathway
:::
::: {.column width=55%}
<img src="img/biomin_exercise-setup.png"/>
:::
::::::
## Exercise tasks
1. Get familiar with the code
2. Implement the simplified chemical reactions
* Add kinetic reaction rates to chemistry-file
* Use source()-function to link chemistry-file to problem
3. Vary parameters, so that leakage pathway is "sealed" (porosity <0.07)
4. Implement new boundary condition for $CO_2$-injection in lower aquifer
5. Exchange the permeability law from Kozeny-Carman to a Power Law
6. Use tabulated values for $CO_2$
## Exercise
First step: Go to
[https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/tree/master/exercises/exercise-biomineralization](https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/tree/master/exercises/exercise-biomineralization)
and check out the README