Newer
Older
---
title: Coupled Freeflow and Porous Media Flow Models in DuMu<sup>X</sup>
---
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# Motivation
## Environmental and Agricultural Issues
{style="width: 60%; margin: auto; "}
<figcaption align = "center">
<font size = "2">
Fig.1 - Evaporation of soil water (Heck et al. (2020))[^3]
</font>
</figcaption>
* Evaporation of soil water
* Soil salinization
* Underground storage (e.g. CO2, atmoic waste)
## Technical Issues
{style="width: 45%; align: left;"}
<figcaption align = "center">
<font size = "2">
Fig.2 - Filter (Schneider et al. (2023))[^1]
</font>
</figcaption>
* Fuel cells
* Filters (e.g. air)
* Heat exchangers (e.g. CPU cooling)
## Biological Issues
{style="width: 25%; align: left;"}
<figcaption align = "center">
<font size = "2">
Fig.3 - Brain tissue (Koch et al. (2020))[^2]
</font>
</figcaption>
* Brain tissue
* Leaf structure
# Model Overview
## Conceptual Physical Model
<img src=img/FFPM-PhysicalModelOverview.png width="80%">
<figcaption align = "center">
<font size = "2">
Fig.4 - Coupled dynamics at the soil-atmosphere interface (Photo: Edward Coltman)
</font>
</figcaption>
## Conceptual Physical Model
{style="width: 80%; align: left;"}
<figcaption align = "center">
<font size = "2">
Fig.5 - Exchange processes at the free-flow porous-medium interface at different scales (Photo: Martin Schneider)
</font>
</figcaption>
{style="width: 15%; margin: auto; float: left;"}
* Stokes / Navier-Stokes / RANS
* 1-phase, n-components, non-equilibrium
**Interface condtions:**
* no thickness, no storage
* local thermodynamic equilibrium
* continuity of fluxes
* continuity of state variables
**Porous media:**
* Darcy/ Forchheimer / Richards
* m-phases, n-components, non-isothermal
</font>
## Mathematical Model: Freeflow
<img src=img/FFPM-freeflowsymbol.png width="40%">
## Mathematical Model: Freeflow
* Total mass balance
$$
\frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0
$$
* Momentum balance
$$
\frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} + \nabla \cdot \left( \rho_g \textbf{v}_g X^\kappa_g - \mathbf{j}_{\text{diff}}^\kappa\right) - q^\kappa = 0
$$
* Component mass balance
$$
\frac{\partial (\rho_g u_g) }{\partial t} + \nabla \cdot (\rho_g h_g \textbf{v}_g) + \sum_{i} {\nabla \cdot (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \nabla \cdot ( (\lambda_{g} + \lambda_{t}) \nabla T) = 0
$$
## Mathematical Model: Porous Medium Flow
<img src=img/FFPM-pmfsymbol.png width="40%">
## Mathematical Model: Porous Medium Flow
* Component mass balance
$$
\sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \textbf{v}_\alpha\rho_\alpha X_\alpha^\kappa + \sum_\kappa \nabla \cdot \left( \textbf{D}_{pm,\alpha}^\kappa\rho_\alpha\nabla X_\alpha^\kappa \right)\right) = 0
$$
* Darcy velocity
$$
\textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right)
$$
* Energy balance
$$
\sum\limits_{\alpha \in \{\text{l, g} \}}\left(\phi\frac{\partial \left(\rho_\alpha S_\alpha u_\alpha\right)}{\partial t} + \nabla \cdot \left(\rho_\alpha h_\alpha \textbf{v}_\alpha \right)\right) + \left(1-\phi\right) \frac{\partial \left(\rho_s c_{p,s}T\right)}{\partial t} - \nabla\cdot \left(\lambda_{pm} \nabla T \right) = 0
$$
## Mathematical Model: Coupling Conditions
<img src=img/FFPM-couplingsymbol.png width="30%">
* Total mass condition
$$
[(\rho_g \textbf{v}_g) \cdot \textbf{n}]^{\text{ff}} = - [(\rho_g \textbf{v}_g + \rho_w \textbf{v}_w) \cdot \textbf{n}]^{\text{pm}}
$$
## Mathematical Model: Coupling Conditions
<img src=img/FFPM-BJS.png width="30%">
* Momentum (tangential)condition
$$
\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{BJ}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\,
$$
## Mathematical Model: Coupling Conditions
* Momentum (normal) condition
$$
[((\rho_g \textbf{v}_g \textbf{v}_g^T - (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) + p_g\textbf{I}) \textbf{n} )]^{\text{ff}} = [(p_g\textbf{I})\textbf{n}]^{\text{pm}}\,
$$
* Component mass condition
$$
[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}, t}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\,
$$
* Energy condition
$$
\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa + \lambda_{g}\nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_i h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\,
$$
## Numerical Model: Coupled Model
<img src=img/FFPM-numericalmodel.png width="25%">
<figcaption align = "center">
<font size = "2">
Fig.6 - Discretization scheme (Fetzer, 2018)[^5]
</font>
</figcaption>
# Example: Soil-Water Evaporation
## Soil-Water Evaporation: Soil-Water Evaporation
<img src=img/FFPM-TurbulentBoundaryLayer.png width="40%">
## Example: Soil-Water Evaporation
<img src=img/FFPM-SoilWaterEvapField.png width="40%">
<figcaption align = "center">
<font size = "2">
Fig.7 - Evaporation in the water cycle (Photo: ETHZ)[^6]
</font>
</figcaption>
<img src=img/FFPM-evapStages.png width="60%">
<figcaption align = "center">
<font size = "2">
Fig.8 - Different evaporation stages (Or et al., 2013)[^4]
</font>
</figcaption>
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
{style="width: 60%; margin: auto; float: left;"}
<font size = "2">
Tab1: Input parameter
</font>
<font size = "5">
| Parameter | Value |
|:----------------------------|--------------:|
| $\textbf{v}_g^{ff}$ [m/s] | (3.5,0)$^T$ |
| $p_g^{ff}$ [Pa] | 1e5 |
| $X_g^{w,ff}$ [-] | 0.008 |
| $T^{ff}$ [K] | 298.15 |
| $p_g^{pm}$ [Pa] | 1e5 |
| $S_l^{pm}$ [-] | 0.98 |
| $T^{pm}$ [K] | 298.15 |
</font>
<figcaption align = "left">
<font size = "2">
Fig.9 - Model setup (Fetzer, 2018)[^5]
</font>
</figcaption>
## Example: Results

<figcaption align = "center">
<font size = "2">
Fig.10 - Results: Evaporation from a simple setup (Fetzer, 2018)[^5]
</font>
</figcaption>
# Exercises
## Exercise: Interface
_Tasks_
- Change flow direction for a tangetial flow as opposed to the original normal flow
- Introduce the beavers joseph tangential flow interface condition
- Redevelop the grid and introduce an undulating interface
- Change the inflow boundary condition to a velocity profile
## Exercise: Models
_Tasks_
- Modify the model to use 2phase multicomponent model in the porous medium.
- Experiment with various data output types: `.csv` and `.json`
- Visualize with various visualization tools: `gnuplot` and `matplotlib`
## Exercise: Turbulence
_Tasks_
- Introduce a Turbulence model to the free-flow domain
- Reduce the free-flow domain by using a symmetry condition at the upper domain boundary
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
- Vary grid resolution and perform a qualitative grid convergence test
[^1]:
<font size = "2">
Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B., Helmig, R., Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics. 2023; 112042. https://doi.org/10.1016/j.jcp.2023.112042.
</font>
[^2]:
<font size = "2">
Koch, T, Flemisch, B, Helmig, R, Wiest, R, Obrist, D. A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. Int J Numer Meth Biomed Engng. 2020; 36:e3298. https://doi.org/10.1002/cnm.
</font>
[^3]:
<font size = "2">
Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of radiation on evaporation rates: A numerical analysis. Water Resources Research, 56, e2020WR027332. https://doi.org/10.1029/2020WR027332
</font>
[^4]:
<font size = "2">
Or, D., Lehmann, P., Shahraeeni, E. and Shokri, N. (2013), Advances in Soil Evaporation Physics—A Review. Vadose Zone Journal, 12: 1-16 vzj2012.0163. https://doi.org/10.2136/vzj2012.0163
</font>
[^5]:
<font size = "2">
Fetzer, Thomas:
Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and
Roughness – Models, Concepts and Analysis, Universität Stuttgart. - Stuttgart: Institut für Wasser- und Umweltsystemmodellierung, 2018
</font>
[^6]:
<font size = "2">
Or, D. (2023, 31. March). https://emeritus.step.ethz.ch/the-step-group.html
</font>