Fig.7 - Evaporation in the water cycle (Photo: ETHZ)[^6]
Fig.7 - Evaporation in the water cycle (Photo: ETHZ)<sup>5</sup>
</font>
</font>
</figcaption>
</figcaption>
...
@@ -189,7 +189,7 @@ Fig.7 - Evaporation in the water cycle (Photo: ETHZ)[^6]
...
@@ -189,7 +189,7 @@ Fig.7 - Evaporation in the water cycle (Photo: ETHZ)[^6]
<figcaptionalign = "center">
<figcaptionalign = "center">
<fontsize = "2">
<fontsize = "2">
Fig.8 - Different evaporation stages (Or et al., 2013)[^4]
Fig.8 - Different evaporation stages (Or et al.(2013))<sup>6</sup>
</font>
</font>
</figcaption>
</figcaption>
...
@@ -217,7 +217,7 @@ Fig.8 - Different evaporation stages (Or et al., 2013)[^4]
...
@@ -217,7 +217,7 @@ Fig.8 - Different evaporation stages (Or et al., 2013)[^4]
<figcaptionalign = "left">
<figcaptionalign = "left">
<fontsize = "2">
<fontsize = "2">
Fig.9 - Model setup (Fetzer, 2018)[^5]
Fig.9 - Model setup (Fetzer (2018))<sup>4</sup>
</font>
</font>
</figcaption>
</figcaption>
...
@@ -227,7 +227,7 @@ Fig.9 - Model setup (Fetzer, 2018)[^5]
...
@@ -227,7 +227,7 @@ Fig.9 - Model setup (Fetzer, 2018)[^5]


<figcaptionalign = "center">
<figcaptionalign = "center">
<fontsize = "2">
<fontsize = "2">
Fig.10 - Results: Evaporation from a simple setup (Fetzer, 2018)[^5]
Fig.10 - Results: Evaporation from a simple setup (Fetzer (2018))<sup>4</sup>
</font>
</font>
</figcaption>
</figcaption>
...
@@ -237,8 +237,8 @@ Fig.10 - Results: Evaporation from a simple setup (Fetzer, 2018)[^5]
...
@@ -237,8 +237,8 @@ Fig.10 - Results: Evaporation from a simple setup (Fetzer, 2018)[^5]
_Tasks_
_Tasks_
- Change flow direction for a tangetial flow as opposed to the originalnormal flow
- Change flow direction for a tangential flow as opposed to the original-normal flow
- Introduce the beavers josephtangentialflow interface condition
- Introduce the Beavers-Joseph-tangential-flow interface condition
- Redevelop the grid and introduce an undulating interface
- Redevelop the grid and introduce an undulating interface
- Change the inflow boundary condition to a velocity profile
- Change the inflow boundary condition to a velocity profile
...
@@ -246,7 +246,7 @@ _Tasks_
...
@@ -246,7 +246,7 @@ _Tasks_
_Tasks_
_Tasks_
- Modify the model to use 2phase multicomponent model in the porous medium.
- Modify the model to use a 2-phase multicomponent model in the porous medium
- Experiment with various data output types: `.csv` and `.json`
- Experiment with various data output types: `.csv` and `.json`
- Visualize with various visualization tools: `gnuplot` and `matplotlib`
- Visualize with various visualization tools: `gnuplot` and `matplotlib`
...
@@ -254,41 +254,26 @@ _Tasks_
...
@@ -254,41 +254,26 @@ _Tasks_
_Tasks_
_Tasks_
- Introduce a Turbulence model to the free-flow domain
- Introduce a turbulence model to the free-flow domain
- Reduce the free-flow domain by using a symmetry condition at the upper domain boundary
- Reduce the free-flow domain by using a symmetry condition at the upper domain boundary
- Vary grid resolution and perform a qualitative grid convergence test
- Vary grid resolution and perform a qualitative grid convergence test
# References
##
[^1]:
<fontsize = "5">
<font size = "2">
Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B., Helmig, R., Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics. 2023; 112042. https://doi.org/10.1016/j.jcp.2023.112042.
</font>
[^2]:
1. Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of radiation on evaporation rates: A numerical analysis. Water Resources Research, 56, e2020WR027332. https://doi.org/10.1029/2020WR027332
<font size = "2">
Koch, T, Flemisch, B, Helmig, R, Wiest, R, Obrist, D. A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. Int J Numer Meth Biomed Engng. 2020; 36:e3298. https://doi.org/10.1002/cnm.
</font>
[^3]:
2. Schneider, M., Gläser, D., Weishaupt, K., Coltman, E., Flemisch, B., Helmig, R. (2023). Coupling staggered-grid and vertex-centered finite-volume methods for coupled porous-medium free-flow problems. Journal of Computational Physics. 112042. https://doi.org/10.1016/j.jcp.2023.112042.
<font size = "2">
Heck, K., Coltman, E., Schneider, J., & Helmig, R. (2020). Influence of radiation on evaporation rates: A numerical analysis. Water Resources Research, 56, e2020WR027332. https://doi.org/10.1029/2020WR027332
</font>
[^4]:
3. Koch, T, Flemisch, B, Helmig, R, Wiest, R, Obrist, D. (2020). A multiscale subvoxel perfusion model to estimate diffusive capillary wall conductivity in multiple sclerosis lesions from perfusion MRI data. Int J Numer Meth Biomed Engng. 36:e3298. https://doi.org/10.1002/cnm.
<font size = "2">
Or, D., Lehmann, P., Shahraeeni, E. and Shokri, N. (2013), Advances in Soil Evaporation Physics—A Review. Vadose Zone Journal, 12: 1-16 vzj2012.0163. https://doi.org/10.2136/vzj2012.0163
</font>
[^5]:
4. Fetzer, Thomas: Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and Roughness – Models, Concepts and Analysis, Universität Stuttgart. - Stuttgart: Institut für Wasser- und Umweltsystemmodellierung, 2018
<font size = "2">
Fetzer, Thomas:
Coupled Free and Porous-Medium Flow Processes Affected by Turbulence and
Roughness – Models, Concepts and Analysis, Universität Stuttgart. - Stuttgart: Institut für Wasser- und Umweltsystemmodellierung, 2018
</font>
5. Or, D., Lehmann, P., Shahraeeni, E. and Shokri, N. (2013), Advances in Soil Evaporation Physics—A Review. Vadose Zone Journal, 12: 1-16 vzj2012.0163. https://doi.org/10.2136/vzj2012.0163
6. Or, D. (2023, 31. March). https://emeritus.step.ethz.ch/the-step-group.html
[^6]:
<font size = "2">
Or, D. (2023, 31. March). https://emeritus.step.ethz.ch/the-step-group.html