Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dumux-course
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
dumux-repositories
dumux-course
Commits
525078a2
Commit
525078a2
authored
1 year ago
by
Martin Schneider
Browse files
Options
Downloads
Plain Diff
Merge branch 'fix/ff-pm-slides' into 'master'
Fix/ff pm slides See merge request
!215
parents
456c5f3e
4a124e58
No related branches found
No related tags found
1 merge request
!215
Fix/ff pm slides
Pipeline
#30846
passed
1 year ago
Stage: deploy
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
slides/coupled_ff-pm.md
+21
-21
21 additions, 21 deletions
slides/coupled_ff-pm.md
with
21 additions
and
21 deletions
slides/coupled_ff-pm.md
+
21
−
21
View file @
525078a2
---
---
title
:
Coupled Free-Flow and Porous Media Flow Models in DuMu
<sup>X</sup>
title
:
Coupled Free-Flow and Porous Media Flow Models in DuMu
^x^
---
---
# Motivation
# Motivation
...
@@ -15,7 +15,7 @@ Fig.1 - Evaporation of soil water (Heck et al. (2020))<sup>1</sup>
...
@@ -15,7 +15,7 @@ Fig.1 - Evaporation of soil water (Heck et al. (2020))<sup>1</sup>
*
Evaporation of soil water
*
Evaporation of soil water
*
Soil salinization
*
Soil salinization
*
Underground storage (e.g. CO2, at
m
oic waste)
*
Underground storage (e.g. CO2, ato
m
ic waste)
## Technical Issues
## Technical Issues
...
@@ -66,12 +66,12 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different
...
@@ -66,12 +66,12 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different
<font
size =
"6"
>
<font
size =
"6"
>
**Free
f
low:**
**Free
F
low:**
*
Stokes / Navier-Stokes / RANS
*
Stokes / Navier-Stokes / RANS
*
1-phase, n-components, non-
equilibrium
*
1-phase, n-components, non-
isothermal
**Interface condtions:**
**Interface cond
i
tions:**
*
no thickness, no storage
*
no thickness, no storage
*
local thermodynamic equilibrium
*
local thermodynamic equilibrium
...
@@ -80,29 +80,29 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different
...
@@ -80,29 +80,29 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different
**Porous media:**
**Porous media:**
*
Darcy/ Forchheimer
/ Richards
*
Darcy
/ Forchheimer
*
m-phases, n-components, non-isothermal
*
m-phases, n-components, non-isothermal
</font>
</font>
## Mathematical Model: Free
f
low
## Mathematical Model: Free
F
low
<img
src=
img/FFPM-freeflowsymbol.png
width=
"40%"
>
<img
src=
img/FFPM-freeflowsymbol.png
width=
"40%"
>
## Mathematical Model: Free
f
low
## Mathematical Model: Free
F
low
*
Total mass
balance
*
Momentum
balance
$$
$$
\f
rac{
\p
artial
\r
ho_g
\t
extbf{v}_g}{
\p
artial t} +
\n
abla
\c
dot (
\r
ho_g
\t
extbf{v}_g
\t
extbf{v}_g^T) -
\n
abla
\c
dot (
\m
athbf{
\t
au}_g +
\m
athbf{
\t
au}_{g,t}) +
\n
abla
\c
dot (p_g
\t
extbf{I})-
\r
ho_g
\t
extbf{g} = 0
\f
rac{
\p
artial
\r
ho_g
\t
extbf{v}_g}{
\p
artial t} +
\n
abla
\c
dot (
\r
ho_g
\t
extbf{v}_g
\t
extbf{v}_g^T) -
\n
abla
\c
dot (
\m
athbf{
\t
au}_g +
\m
athbf{
\t
au}_{g,t}) +
\n
abla
\c
dot (p_g
\t
extbf{I})-
\r
ho_g
\t
extbf{g} = 0
$$
$$
*
M
om
entum
balance
*
C
om
ponent mass
balance
$$
$$
\f
rac{
\p
artial
\l
eft(
\r
ho_g X^
\k
appa_g
\r
ight)}{
\p
artial t} +
\n
abla
\c
dot
\l
eft(
\r
ho_g
\t
extbf{v}_g
X^
\k
appa_g -
\m
athbf{j}_{
\t
ext{diff}}^
\k
appa
\r
ight) - q^
\k
appa = 0
\f
rac{
\p
artial
\l
eft(
\r
ho_g X^
\k
appa_g
\r
ight)}{
\p
artial t} +
\n
abla
\c
dot
\l
eft(
\r
ho_g
X^
\k
appa_g
\t
extbf{v}_g
+
\m
athbf{j}_{
\t
ext{diff}}^
\k
appa
\r
ight) - q^
\k
appa = 0
$$
$$
*
Component mass
balance
*
Energy
balance
$$
$$
\f
rac{
\p
artial (
\r
ho_g u_g) }{
\p
artial t} +
\n
abla
\c
dot (
\r
ho_g h_g
\t
extbf{v}_g) +
\s
um_{
i
} {
\n
abla
\c
dot (h_g^
\k
appa
\t
extbf{j}_{
\t
ext{diff},t}^
\k
appa)} -
\n
abla
\c
dot ( (
\l
ambda_{g} +
\l
ambda_{t})
\n
abla T) = 0
\f
rac{
\p
artial (
\r
ho_g u_g) }{
\p
artial t} +
\n
abla
\c
dot (
\r
ho_g h_g
\t
extbf{v}_g) +
\s
um_{
\k
appa
} {
\n
abla
\c
dot (h_g^
\k
appa
\t
extbf{j}_{
\t
ext{diff},t}^
\k
appa)} -
\n
abla
\c
dot ( (
\l
ambda_{g} +
\l
ambda_{t})
\n
abla T) = 0
$$
$$
## Mathematical Model: Porous Medium Flow
## Mathematical Model: Porous Medium Flow
...
@@ -110,14 +110,14 @@ $$
...
@@ -110,14 +110,14 @@ $$
## Mathematical Model: Porous Medium Flow
## Mathematical Model: Porous Medium Flow
*
Component mass
balance
*
Darcy velocity (momentum
balance
)
$$
$$
\
s
um
\l
imits_{
\a
lpha
\i
n
\{\t
ext{l, g}
\}
}
\l
eft(
\p
hi
\f
rac{
\p
artial
\l
eft(
\r
ho_
\a
lpha S_
\a
lpha X_
\a
lpha^
\k
appa
\r
ight)}{
\p
artial t } +
\n
abla
\c
dot
\t
extbf{v}
_
\a
lpha
\r
ho_
\a
lpha
X_
\a
lpha^
\k
appa +
\s
um_
\k
appa
\n
abla
\c
dot
\l
eft(
\t
extbf{D}_{pm,
\a
lpha}^
\k
appa
\r
ho_
\a
lpha
\n
abla X_
\a
lpha^
\k
appa
\r
ight)
\r
ight) = 0
\
t
extbf{v}_
\a
lpha = -
\f
rac{k_{r,
\a
lpha}}{
\m
u_
\a
lpha} K
\l
eft(
\n
abla p
_
\a
lpha
-
\r
ho_
\a
lpha
\t
extbf{g}
\r
ight)
$$
$$
*
Darcy velocity
*
Component mass balance
$$
$$
\
t
extbf{v}_
\a
lpha = -
\f
rac{k_{r,
\a
lpha}}{
\m
u_
\a
lpha} K
\l
eft(
\n
abla p_
\a
lpha -
\r
ho_
\a
lpha
\t
extbf{g}
\r
ight)
\
s
um
\l
imits_{
\a
lpha
\i
n
\{\t
ext{l, g}
\}
}
\l
eft(
\p
hi
\f
rac{
\p
artial
\l
eft(
\r
ho_
\a
lpha S_
\a
lpha X_
\a
lpha^
\k
appa
\r
ight)}{
\p
artial t } +
\n
abla
\c
dot
\r
ho_
\a
lpha X_
\a
lpha^
\k
appa
\t
extbf{v}_
\a
lpha +
\n
abla
\c
dot
\m
athbf{j}_{
\t
ext{diff}}^
\k
appa
\r
ight)
= 0
$$
$$
*
Energy balance
*
Energy balance
...
@@ -138,9 +138,9 @@ $$
...
@@ -138,9 +138,9 @@ $$
## Mathematical Model: Coupling Conditions
## Mathematical Model: Coupling Conditions
<img
src=
img/FFPM-BJS.png
width=
"30%"
>
<img
src=
img/FFPM-BJS.png
width=
"30%"
>
*
Momentum (tangential)condition
*
Momentum (tangential)
condition
$$
$$
\l
eft[
\l
eft(-
\t
extbf{v}_g -
\f
rac{
\s
qrt{(
\t
extbf{K}
\t
extbf{t}_i)
\c
dot
\t
extbf{t}_i}}{
\a
lpha_{BJ}} (
\n
abla
\t
extbf{v}_g +
\n
abla
\t
extbf{v}_g^T)
\t
extbf{n}
\r
ight)
\c
dot
\t
extbf{t}_i
\r
ight]^{
\t
ext{ff}} = 0
\,
,
\q
uad i
\i
n
\{
1, .. ,
\,
d-1
\}\,
\l
eft[
\l
eft(-
\t
extbf{v}_g -
\f
rac{
\s
qrt{(
\t
extbf{K}
\t
extbf{t}_i)
\c
dot
\t
extbf{t}_i}}{
\a
lpha_{
\m
athrm{
BJ}}
}
(
\n
abla
\t
extbf{v}_g +
\n
abla
\t
extbf{v}_g^T)
\t
extbf{n}
\r
ight)
\c
dot
\t
extbf{t}_i
\r
ight]^{
\t
ext{ff}} = 0
\,
,
\q
uad i
\i
n
\{
1, .. ,
\,
d-1
\}\,
$$
$$
## Mathematical Model: Coupling Conditions
## Mathematical Model: Coupling Conditions
...
@@ -152,12 +152,12 @@ $$
...
@@ -152,12 +152,12 @@ $$
*
Component mass condition
*
Component mass condition
$$
$$
[(
\r
ho_g X_g^
\k
appa
\t
extbf{v}_g +
\t
extbf{j}_{
\t
ext{diff}
, t
})
\c
dot
\t
extbf{n}]^{
\t
ext{ff}} = -
\l
eft[
\l
eft(
\s
um_{
\a
lpha} (
\r
ho_{
\a
lpha} X_{
\a
lpha}^
\k
appa
\t
extbf{v}_
\a
lpha +
\t
extbf{j}^
\k
appa_{
\t
ext{diff},
\a
lpha})
\r
ight)
\c
dot
\t
extbf{n}
\r
ight]^{
\t
ext{pm}}
\,
[(
\r
ho_g X_g^
\k
appa
\t
extbf{v}_g +
\t
extbf{j}_{
\t
ext{diff}
^
\k
appa
})
\c
dot
\t
extbf{n}]^{
\t
ext{ff}} = -
\l
eft[
\l
eft(
\s
um_{
\a
lpha} (
\r
ho_{
\a
lpha} X_{
\a
lpha}^
\k
appa
\t
extbf{v}_
\a
lpha +
\t
extbf{j}^
\k
appa_{
\t
ext{diff},
\a
lpha})
\r
ight)
\c
dot
\t
extbf{n}
\r
ight]^{
\t
ext{pm}}
\,
$$
$$
*
Energy condition
*
Energy condition
$$
$$
\l
eft[
\l
eft(
\r
ho_g h_g
\t
extbf{v}_g +
\s
um_i h_g^
\k
appa
\t
extbf{j}_{
\t
ext{diff},g}^
\k
appa
+
\l
ambda_{g}
\n
abla T
\r
ight)
\c
dot
\t
extbf{n}
\r
ight]^{
\t
ext{ff}} = -
\l
eft[
\l
eft(
\s
um_
\a
lpha (
\r
ho_
\a
lpha h_
\a
lpha
\t
extbf{v}_
\a
lpha +
\s
um_
i
h_
\a
lpha^
\k
appa
\t
extbf{j}_{
\t
ext{diff},
\a
lpha}^
\k
appa) -
\l
ambda_{
\t
ext{pm}}
\n
abla T
\r
ight)
\c
dot
\t
extbf{n}
\r
ight]^{
\t
ext{pm}}
\,
\l
eft[
\l
eft(
\r
ho_g h_g
\t
extbf{v}_g +
\s
um_i h_g^
\k
appa
\t
extbf{j}_{
\t
ext{diff},g}^
\k
appa
- (
\l
ambda_{g}
+
\l
ambda_{t})
\n
abla T
\r
ight)
\c
dot
\t
extbf{n}
\r
ight]^{
\t
ext{ff}} = -
\l
eft[
\l
eft(
\s
um_
\a
lpha (
\r
ho_
\a
lpha h_
\a
lpha
\t
extbf{v}_
\a
lpha +
\s
um_
\k
appa
h_
\a
lpha^
\k
appa
\t
extbf{j}_{
\t
ext{diff},
\a
lpha}^
\k
appa) -
\l
ambda_{
\t
ext{pm}}
\n
abla T
\r
ight)
\c
dot
\t
extbf{n}
\r
ight]^{
\t
ext{pm}}
\,
$$
$$
## Numerical Model: Coupled Model
## Numerical Model: Coupled Model
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment