Skip to content
Snippets Groups Projects
Commit 525078a2 authored by Martin Schneider's avatar Martin Schneider
Browse files

Merge branch 'fix/ff-pm-slides' into 'master'

Fix/ff pm slides

See merge request !215
parents 456c5f3e 4a124e58
No related branches found
No related tags found
1 merge request!215Fix/ff pm slides
Pipeline #30846 passed
--- ---
title: Coupled Free-Flow and Porous Media Flow Models in DuMu<sup>X</sup> title: Coupled Free-Flow and Porous Media Flow Models in DuMu^x^
--- ---
# Motivation # Motivation
...@@ -15,7 +15,7 @@ Fig.1 - Evaporation of soil water (Heck et al. (2020))<sup>1</sup> ...@@ -15,7 +15,7 @@ Fig.1 - Evaporation of soil water (Heck et al. (2020))<sup>1</sup>
* Evaporation of soil water * Evaporation of soil water
* Soil salinization * Soil salinization
* Underground storage (e.g. CO2, atmoic waste) * Underground storage (e.g. CO2, atomic waste)
## Technical Issues ## Technical Issues
...@@ -66,12 +66,12 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different ...@@ -66,12 +66,12 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different
<font size = "6"> <font size = "6">
**Freeflow:** **Free Flow:**
* Stokes / Navier-Stokes / RANS * Stokes / Navier-Stokes / RANS
* 1-phase, n-components, non-equilibrium * 1-phase, n-components, non-isothermal
**Interface condtions:** **Interface conditions:**
* no thickness, no storage * no thickness, no storage
* local thermodynamic equilibrium * local thermodynamic equilibrium
...@@ -80,29 +80,29 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different ...@@ -80,29 +80,29 @@ Fig.5 - Exchange processes at the free-flow porous-medium interface at different
**Porous media:** **Porous media:**
* Darcy/ Forchheimer / Richards * Darcy / Forchheimer
* m-phases, n-components, non-isothermal * m-phases, n-components, non-isothermal
</font> </font>
## Mathematical Model: Freeflow ## Mathematical Model: Free Flow
<img src=img/FFPM-freeflowsymbol.png width="40%"> <img src=img/FFPM-freeflowsymbol.png width="40%">
## Mathematical Model: Freeflow ## Mathematical Model: Free Flow
* Total mass balance * Momentum balance
$$ $$
\frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0 \frac{\partial \rho_g \textbf{v}_g}{\partial t} + \nabla \cdot (\rho_g \textbf{v}_g \textbf{v}_g^T) - \nabla \cdot (\mathbf{\tau}_g + \mathbf{\tau}_{g,t}) +\nabla \cdot (p_g\textbf{I})- \rho_g \textbf{g} = 0
$$ $$
* Momentum balance * Component mass balance
$$ $$
\frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} + \nabla \cdot \left( \rho_g \textbf{v}_g X^\kappa_g - \mathbf{j}_{\text{diff}}^\kappa\right) - q^\kappa = 0 \frac{\partial \left(\rho_g X^\kappa_g\right)}{\partial t} + \nabla \cdot \left( \rho_g X^\kappa_g \textbf{v}_g + \mathbf{j}_{\text{diff}}^\kappa\right) - q^\kappa = 0
$$ $$
* Component mass balance * Energy balance
$$ $$
\frac{\partial (\rho_g u_g) }{\partial t} + \nabla \cdot (\rho_g h_g \textbf{v}_g) + \sum_{i} {\nabla \cdot (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \nabla \cdot ( (\lambda_{g} + \lambda_{t}) \nabla T) = 0 \frac{\partial (\rho_g u_g) }{\partial t} + \nabla \cdot (\rho_g h_g \textbf{v}_g) + \sum_{\kappa} {\nabla \cdot (h_g^\kappa \textbf{j}_{\text{diff},t}^\kappa)} - \nabla \cdot ( (\lambda_{g} + \lambda_{t}) \nabla T) = 0
$$ $$
## Mathematical Model: Porous Medium Flow ## Mathematical Model: Porous Medium Flow
...@@ -110,14 +110,14 @@ $$ ...@@ -110,14 +110,14 @@ $$
## Mathematical Model: Porous Medium Flow ## Mathematical Model: Porous Medium Flow
* Component mass balance * Darcy velocity (momentum balance)
$$ $$
\sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \textbf{v}_\alpha\rho_\alpha X_\alpha^\kappa + \sum_\kappa \nabla \cdot \left( \textbf{D}_{pm,\alpha}^\kappa\rho_\alpha\nabla X_\alpha^\kappa \right)\right) = 0 \textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right)
$$ $$
* Darcy velocity * Component mass balance
$$ $$
\textbf{v}_\alpha = - \frac{k_{r,\alpha}}{\mu_\alpha} K \left(\nabla p_\alpha - \rho_\alpha \textbf{g}\right) \sum\limits_{\alpha \in \{\text{l, g} \}} \left(\phi \frac{\partial \left(\rho_\alpha S_\alpha X_\alpha^\kappa\right)}{\partial t } + \nabla \cdot \rho_\alpha X_\alpha^\kappa \textbf{v}_\alpha + \nabla \cdot \mathbf{j}_{\text{diff}}^\kappa\right) = 0
$$ $$
* Energy balance * Energy balance
...@@ -138,9 +138,9 @@ $$ ...@@ -138,9 +138,9 @@ $$
## Mathematical Model: Coupling Conditions ## Mathematical Model: Coupling Conditions
<img src=img/FFPM-BJS.png width="30%"> <img src=img/FFPM-BJS.png width="30%">
* Momentum (tangential)condition * Momentum (tangential) condition
$$ $$
\left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{BJ}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\, \left[\left(- \textbf{v}_g - \frac{\sqrt{(\textbf{K}\textbf{t}_i)\cdot \textbf{t}_i}}{\alpha_{\mathrm{BJ}}} (\nabla \textbf{v}_g + \nabla \textbf{v}_g^T)\textbf{n} \right) \cdot \textbf{t}_i \right]^{\text{ff}} = 0\, , \quad i \in \{1, .. ,\, d-1\}\,
$$ $$
## Mathematical Model: Coupling Conditions ## Mathematical Model: Coupling Conditions
...@@ -152,12 +152,12 @@ $$ ...@@ -152,12 +152,12 @@ $$
* Component mass condition * Component mass condition
$$ $$
[(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}, t}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\, [(\rho_g X_g^\kappa \textbf{v}_g + \textbf{j}_{\text{diff}^\kappa}) \cdot \textbf{n}]^{\text{ff}} = - \left[\left( \sum_{\alpha} (\rho_{\alpha} X_{\alpha}^\kappa \textbf{v}_\alpha + \textbf{j}^\kappa_{\text{diff}, \alpha})\right) \cdot \textbf{n}\right]^{\text{pm}}\,
$$ $$
* Energy condition * Energy condition
$$ $$
\left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa + \lambda_{g}\nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_i h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\, \left[\left(\rho_g h_g \textbf{v}_g + \sum_i h_g^\kappa \textbf{j}_{\text{diff},g}^\kappa - (\lambda_{g} + \lambda_{t})\nabla T\right)\cdot \textbf{n}\right]^{\text{ff}} = - \left[\left( \sum_\alpha (\rho_\alpha h_\alpha \textbf{v}_\alpha + \sum_\kappa h_\alpha^\kappa \textbf{j}_{\text{diff},\alpha}^\kappa) - \lambda_{\text{pm}}\nabla T\right)\cdot \textbf{n}\right]^{\text{pm}}\,
$$ $$
## Numerical Model: Coupled Model ## Numerical Model: Coupled Model
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment