Skip to content
Snippets Groups Projects
Commit a957e61c authored by Mathis Kelm's avatar Mathis Kelm
Browse files

[slides][biomin] fixup formatting, power law, tasks

parent 088ff91c
No related branches found
No related tags found
1 merge request!168Cleanup biomin slides
Pipeline #30403 waiting for manual action
...@@ -122,10 +122,10 @@ Neglecting microbial growth and decay, attachment and detachment ...@@ -122,10 +122,10 @@ Neglecting microbial growth and decay, attachment and detachment
- Urea hydrolysis - Urea hydrolysis
$$ $$
\begin{aligned} \begin{aligned}
\underset{\text{urea}}{CO(NH_2)_2} + 2 H_2O \underset{\text{urea}}{\mathrm{CO(NH_2)_2}} + 2 \mathrm{H_2O}
\overset{\text{urease}}{\rightarrow} \overset{\text{urease}}{\rightarrow}
\\ \\
\underset{\text{ammonia}}{2NH_3} + \underset{\text{carbonic acid}}{H_2CO_3} \underset{\text{ammonia}}{\mathrm{2NH_3}} + \underset{\text{carbonic acid}}{\mathrm{H_2CO_3}}
\end{aligned} \end{aligned}
$$ $$
::: :::
...@@ -135,7 +135,7 @@ $$ ...@@ -135,7 +135,7 @@ $$
Here: Ureolytic microbes produce the enzyme urease (MICP) Here: Ureolytic microbes produce the enzyme urease (MICP)
$$ $$
CO(NH_2)_2 + 2 H_2O + Ca^{2+} \rightarrow 2 NH_4^+ + CaCO_3 \mathrm{CO(NH_2)_2 + 2 H_2O + Ca^{2+} \rightarrow 2 NH_4^+ + CaCO_3}
$$ $$
Different reactions in detail: Different reactions in detail:
...@@ -144,12 +144,12 @@ Different reactions in detail: ...@@ -144,12 +144,12 @@ Different reactions in detail:
$$ $$
\begin{array}{lr} \begin{array}{lr}
CO(NH_2)_2 + 2 H_2O \rightarrow 2 NH_3 + H_2CO_3 \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \mathrm{CO(NH_2)_2 + 2 H_2O \rightarrow 2 NH_3 + H_2CO_3} \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
& \text{ureolysis} \\ & \text{ureolysis} \\
H_2CO_3 \leftrightarrow HCO_3^- + H^+ & \text{dissociation of carbonic acid} \\ \mathrm{H_2CO_3 \rightleftharpoons HCO_3^- + H^+} & \text{dissociation of carbonic acid} \\
HCO_3^- \leftrightarrow CO_3^{2-} + H^+ & \text{dissociation of bicarbonate ion} \\ \mathrm{HCO_3^- \rightleftharpoons CO_3^{2-} + H^+} & \text{dissociation of bicarbonate ion} \\
2 NH_4^+ \leftrightarrow 2 NH_3 + 2 H^+ & \text{dissociation of ammonia} \\ \mathrm{2 NH_4^+ \rightleftharpoons 2 NH_3 + 2 H^+} & \text{dissociation of ammonia} \\
Ca^{2+} + CO_3^{2-} \leftrightarrow CaCO_3 \downarrow & \text{calcite precipitation/dissolution} \mathrm{Ca^{2+} + CO_3^{2-} \rightleftharpoons CaCO_3 \downarrow} & \text{calcite precipitation/dissolution}
\end{array} \end{array}
$$ $$
...@@ -166,7 +166,7 @@ $$ ...@@ -166,7 +166,7 @@ $$
$$ $$
\mathrm{ \mathrm{
\underset{\text{calcium}}{Ca^{2+}} + \underset{\text{carbonate}}{CO_3^{2-}} \underset{\text{calcium}}{Ca^{2+}} + \underset{\text{carbonate}}{CO_3^{2-}}
\leftrightarrow \underset{\text{calcite}}{CaCO_3 \downarrow} \rightleftharpoons \underset{\text{calcite}}{CaCO_3 \downarrow}
} }
$$ $$
::: :::
...@@ -242,7 +242,7 @@ $$ ...@@ -242,7 +242,7 @@ $$
\begin{aligned} \begin{aligned}
\qquad\qquad & \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \qquad\qquad & \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
\text{Precipitation rate:} \\ \text{Precipitation rate:} \\
r_\text{precip} &= f\; \left( A_\text{interface}, \Omega = \frac{\left[\mathrm{Ca}^{2+}\right]\left[CO_3^{2-}\right]}{K_\text{sp}}, T \right) r_\text{precip} &= f\; \left( A_\text{interface}, \Omega = \frac{\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO_3}^{2-}\right]}{K_\text{sp}}, T \right)
\\ \\
\qquad\qquad & \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \qquad\qquad & \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
\text{For this exercise:} \\ \text{For this exercise:} \\
...@@ -266,7 +266,7 @@ K &= K_0 \left(\frac{1-\phi_0}{1-\phi}\right)^2 \left(\frac{\phi}{\phi_0}\right) ...@@ -266,7 +266,7 @@ K &= K_0 \left(\frac{1-\phi_0}{1-\phi}\right)^2 \left(\frac{\phi}{\phi_0}\right)
\\ \\
\text{or}& \text{or}&
\\ \\
K &= K_0 \left( \frac{1-\phi_0}{1-\phi} \right)^\eta K &= K_0 \left( \frac{\phi}{\phi_0} \right)^\eta
\end{aligned} \end{aligned}
$$ $$
...@@ -348,10 +348,10 @@ Academic problem setup ...@@ -348,10 +348,10 @@ Academic problem setup
* 2 aquifers with sealing aquitard * 2 aquifers with sealing aquitard
* Upper aquifer: "drinking water" * Upper aquifer: "drinking water"
* Lower aquifer: "$CO_2$ storage" * Lower aquifer: "$\mathrm{CO_2}$ storage"
* Problem: * Problem:
* Leakage pathway * Leakage pathway
* Stored $CO_2$ would migrate to drinking water aquifer! * Stored $\mathrm{CO_2}$ would migrate to drinking water aquifer!
* Biomineralization injection could "seal" the leakage pathway * Biomineralization injection could "seal" the leakage pathway
::: :::
::: {.column width=55%} ::: {.column width=55%}
...@@ -363,12 +363,11 @@ Academic problem setup ...@@ -363,12 +363,11 @@ Academic problem setup
1. Get familiar with the code 1. Get familiar with the code
2. Implement the simplified chemical reactions 2. Implement the simplified chemical reactions
* Add kinetic reaction rates to chemistry-file 3. Use source()-function to link chemistry-file to problem
* Use source()-function to link chemistry-file to problem 4. Vary parameters, so that leakage pathway is "sealed" (porosity $<0.07$)
3. Vary parameters, so that leakage pathway is "sealed" (porosity <0.07) 5. Implement new boundary condition for $\mathrm{CO_2}$-injection in lower aquifer
4. Implement new boundary condition for $CO_2$-injection in lower aquifer 6. Exchange the permeability law from Kozeny-Carman to a Power Law
5. Exchange the permeability law from Kozeny-Carman to a Power Law 7. Use tabulated values for $\mathrm{CO_2}$
6. Use tabulated values for $CO_2$
## Exercise ## Exercise
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment