Skip to content
Snippets Groups Projects
Commit 21b5d1e7 authored by Timo Koch's avatar Timo Koch
Browse files

[doc] The diffusivity is effective

parent 53a65e75
No related branches found
No related tags found
1 merge request!3696Fix/doc porosity time
...@@ -36,7 +36,7 @@ ...@@ -36,7 +36,7 @@
* * \f$ \mu \f$ represents the dynamic viscosity, * * \f$ \mu \f$ represents the dynamic viscosity,
* * \f$ p \f$ is the pressure, * * \f$ p \f$ is the pressure,
* * \f$ \textbf{g} \f$ is the gravitational acceleration vector, * * \f$ \textbf{g} \f$ is the gravitational acceleration vector,
* * \f$ {\bf D_{pm}^\kappa} \f$ is the diffusivity in the porous medium, * * \f$ {\bf D_{pm}^\kappa} \f$ is the effective diffusivity in the porous medium,
* * and \f$ q \f$ is a source or sink term. * * and \f$ q \f$ is a source or sink term.
* *
* The model is able to use either mole or mass fractions. The property useMoles can be set to either true or false in the * The model is able to use either mole or mass fractions. The property useMoles can be set to either true or false in the
......
...@@ -34,7 +34,7 @@ ...@@ -34,7 +34,7 @@
* * \f$ \mathbf{K} \f$ is the intrinsic permeability tensor, * * \f$ \mathbf{K} \f$ is the intrinsic permeability tensor,
* * \f$ p \f$ is the pressure, * * \f$ p \f$ is the pressure,
* * \f$ \mathbf{g} \f$ is the gravitational acceleration vector, * * \f$ \mathbf{g} \f$ is the gravitational acceleration vector,
* * \f$ {\bf D_{pm}^\kappa} \f$ is the diffusivity in the porous medium, * * \f$ {\bf D_{pm}^\kappa} \f$ is the effective diffusivity in the porous medium,
* * \f$ q_\kappa \f$ is a source or sink term. * * \f$ q_\kappa \f$ is a source or sink term.
* *
* The solid or mineral phases are assumed to consist of a single component. * The solid or mineral phases are assumed to consist of a single component.
......
...@@ -37,7 +37,7 @@ ...@@ -37,7 +37,7 @@
* * \f$ X_\alpha^\kappa \f$ is the mass fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ X_\alpha^\kappa \f$ is the mass fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$,
* * \f$ x_\alpha^\kappa \f$ is the mole fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ x_\alpha^\kappa \f$ is the mole fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$,
* * \f$ v_\alpha \f$ is the velocity of phase \f$ \alpha \f$, * * \f$ v_\alpha \f$ is the velocity of phase \f$ \alpha \f$,
* * \f$ {\bf D_{\alpha, pm}^\kappa} \f$ is the diffusivity of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ D_{\alpha, \text{pm}}^\kappa \f$ is the effective diffusivity of component \f$ \kappa \f$ in phase \f$ \alpha \f$,
* * \f$ M_\kappa \f$ is the molar mass of component \f$ \kappa \f$ * * \f$ M_\kappa \f$ is the molar mass of component \f$ \kappa \f$
* * \f$ q_\alpha^\kappa \f$ is a source or sink term. * * \f$ q_\alpha^\kappa \f$ is a source or sink term.
* *
......
...@@ -27,7 +27,7 @@ ...@@ -27,7 +27,7 @@
(\nabla p_\alpha - \varrho_\alpha \mathbf{g}) \right\} (\nabla p_\alpha - \varrho_\alpha \mathbf{g}) \right\}
\nonumber \\ \nonumber \\
\nonumber \\ \nonumber \\
&& - \sum\limits_\alpha \nabla \cdot \left\{ D_\text{pm}^\kappa \varrho_\alpha \frac{1}{M_\kappa} && - \sum\limits_\alpha \nabla \cdot \left\{ D_{\alpha, \text{pm}}^\kappa \varrho_\alpha \frac{1}{M_\kappa}
\nabla X^\kappa_{\alpha} \right\} \nabla X^\kappa_{\alpha} \right\}
- q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha, - q^\kappa = 0 \qquad \forall \kappa , \; \forall \alpha,
\f} \f}
...@@ -39,7 +39,7 @@ ...@@ -39,7 +39,7 @@
* * \f$ X_\alpha^\kappa \f$ is the mass fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ X_\alpha^\kappa \f$ is the mass fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$,
* * \f$ x_\alpha^\kappa \f$ is the mole fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ x_\alpha^\kappa \f$ is the mole fraction of component \f$ \kappa \f$ in phase \f$ \alpha \f$,
* * \f$ v_\alpha \f$ is the velocity of phase \f$ \alpha \f$, * * \f$ v_\alpha \f$ is the velocity of phase \f$ \alpha \f$,
* * \f$ {\bf D_{\alpha, pm}^\kappa} \f$ is the diffusivity of component \f$ \kappa \f$ in phase \f$ \alpha \f$, * * \f$ D_{\alpha, \text{pm}}^\kappa \f$ is the effective diffusivity of component \f$ \kappa \f$ in phase \f$ \alpha \f$,
* * \f$ M_\kappa \f$ is the molar mass of component \f$ \kappa \f$ * * \f$ M_\kappa \f$ is the molar mass of component \f$ \kappa \f$
* * \f$ q_\alpha^\kappa \f$ is a source or sink term. * * \f$ q_\alpha^\kappa \f$ is a source or sink term.
* *
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment