Skip to content
Snippets Groups Projects
Commit 5d391e77 authored by Thomas Fetzer's avatar Thomas Fetzer
Browse files

[navierstokes][nonisothermal] Implement effective thermal conductivity

parent 3af102b0
No related branches found
No related tags found
1 merge request!867Freeflow/ransncni
......@@ -85,8 +85,8 @@ public:
const auto& outsideVolVars = elemVolVars[scvf.outsideScvIdx()];
// effective conductivity tensors
auto insideLambda = insideVolVars.thermalConductivity();
auto outsideLambda = outsideVolVars.thermalConductivity();
auto insideLambda = insideVolVars.effectiveThermalConductivity();
auto outsideLambda = outsideVolVars.effectiveThermalConductivity();
// scale by extrusion factor
insideLambda *= insideVolVars.extrusionFactor();
......
......@@ -326,6 +326,12 @@ public:
Scalar thermalConductivity() const
{ return FluidSystem::thermalConductivity(this->fluidState_, phaseIdx); }
/*!
* \brief Returns the effective thermal conductivity \f$\mathrm{[W/(m*K)]}\f$.
*/
Scalar effectiveThermalConductivity() const
{ return thermalConductivity(); }
//! The temperature is a primary variable for non-isothermal models
using ParentType::temperature;
template<class ElementSolution>
......
......@@ -20,20 +20,7 @@
* \file
* \ingroup NavierStokesNCModel
*
* \brief A single-phase, multi-component isothermal Navier-Stokes model
*
* This model implements a single-phase, multi-component isothermal Navier-Stokes model, solving the <B> momentum balance equation </B>
* \f[
\frac{\partial (\varrho \textbf{v})}{\partial t} + \nabla \cdot (\varrho \textbf{v} \textbf{v}^{\textup{T}}) = \nabla \cdot (\mu (\nabla \textbf{v} + \nabla \textbf{v}^{\textup{T}}))
- \nabla p + \varrho \textbf{g} - \textbf{f}
* \f]
* By setting the property <code>EnableInertiaTerms</code> to <code>false</code> the Stokes
* equation can be solved. In this case the term
* \f[
* \nabla \cdot (\varrho \textbf{v} \textbf{v}^{\textup{T}})
* \f]
* is neglected.
*
* \copydoc Dumux::NavierStokesModel
*
* The system is closed by a <B> component mass/mole balance equation </B> for each component \f$\kappa\f$:
* \f[
......
......@@ -26,9 +26,18 @@
* \f[
* \frac{\partial (\varrho v)}{\partial t}
* + \nabla \cdot \left( \varrho h {\boldsymbol{v}}
* - \lambda \textbf{grad}\, T \right) - q_T = 0
* - \lambda_\text{eff} \textbf{grad}\, T \right) - q_T = 0
* \f]
*
*
* For laminar Navier-Stokes flow the effective thermal conductivity is the fluid
* thermal conductivity: \f$ \lambda_\text{eff} = \lambda \f$.
*
* For turbulent Reynolds-averaged Navier-Stokes flow the eddy thermal conductivity is added:
* \f$ \lambda_\text{eff} = \lambda + \lambda_\text{t} \f$.
* The eddy thermal conductivity \f$ \lambda_\text{t} \f$ is related to the eddy viscosity \f$ \nu_\text{t} \f$
* by the turbulent Prandtl number:
* \f[ \lambda_\text{t} = \frac{\nu_\text{t} \varrho c_\text{p}}{\mathrm{Pr}_\text{t}} \f]
*/
#ifndef DUMUX_STAGGERED_NI_MODEL_HH
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment