Skip to content
Snippets Groups Projects
Commit 6808e8d1 authored by Martin Schneider's avatar Martin Schneider
Browse files

[handbook][pics] Apply renaming of png folder

parent 11469e1c
No related branches found
No related tags found
2 merge requests!1423Feature/improve handbook discretization,!1338[handbook] Update for 3.0
...@@ -220,7 +220,7 @@ with the tensor $\mathbf{\Lambda}_K$ associated with control volume $K$, the dis ...@@ -220,7 +220,7 @@ with the tensor $\mathbf{\Lambda}_K$ associated with control volume $K$, the dis
\begin{figure} [ht] \begin{figure} [ht]
\centering \centering
\includegraphics[width=0.4\linewidth,keepaspectratio]{PNG/cctpfa.png} \includegraphics[width=0.4\linewidth,keepaspectratio]{png/cctpfa.png}
\caption{Two neighboring control volumes sharing the face $\sigma$.} \caption{Two neighboring control volumes sharing the face $\sigma$.}
\label{pc:cctpfa} \label{pc:cctpfa}
\end{figure} \end{figure}
...@@ -271,7 +271,7 @@ Using these conditions, the intermediate face unknowns ${u}_\sigma$ can be elimi ...@@ -271,7 +271,7 @@ Using these conditions, the intermediate face unknowns ${u}_\sigma$ can be elimi
\begin{figure} [ht] \begin{figure} [ht]
\centering \centering
\includegraphics[width=0.8\linewidth,keepaspectratio]{PNG/mpfa_iv.png} \includegraphics[width=0.8\linewidth,keepaspectratio]{png/mpfa_iv.png}
\caption{Interaction region for the Mpfa-O method. The graphic on the right illustrates how the sub-control volume $L^v$ and face $\sigma^v_2$ are embedded in cell $L$. Note that the face stencils for all sub-control volume faces in the depicted interaction region are $\mathcal{S}_{\sigma^v_i} = \{ K,L,M \}$, meaning that the fluxes over the sub-control volume faces depend on the three cell unknowns $u_K, u_L, u_M$.} \caption{Interaction region for the Mpfa-O method. The graphic on the right illustrates how the sub-control volume $L^v$ and face $\sigma^v_2$ are embedded in cell $L$. Note that the face stencils for all sub-control volume faces in the depicted interaction region are $\mathcal{S}_{\sigma^v_i} = \{ K,L,M \}$, meaning that the fluxes over the sub-control volume faces depend on the three cell unknowns $u_K, u_L, u_M$.}
\label{pc:interactionRegion_mpfa} \label{pc:interactionRegion_mpfa}
\end{figure} \end{figure}
......
File moved
File moved
File moved
File moved
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment