Skip to content
Snippets Groups Projects
Commit 88eb807a authored by Melanie Lipp's avatar Melanie Lipp Committed by Martin Schneider
Browse files

[handbook] Revise stepsofasimulation.

parent cb612777
No related branches found
No related tags found
1 merge request!1338[handbook] Update for 3.0
......@@ -2,17 +2,12 @@
\label{flow}
This chapter is supposed to show how things are ``handed around'' in \Dumux. It
This chapter is supposed to give a short overview over how things are ``handed around'' in \Dumux. It
is not a comprehenisve guide through the modeling framework of \Dumux, but
hopefully it will help getting to grips with it.
In Section \ref{content} the structure of \Dumux is shown from a \emph{content}
point of view.
% TODO: revise section about implementation structure
% Section \ref{implementation} however is written from the point of view of the \emph{implementation}.
% The same coloration in the flowcharts of both sections refers to the same level of calculation. For keeping things
% simple, the program flow of a \verb+2p+ model is shown in section \ref{implementation}. There are extensive comments
% regarding the formating in the tex file: so feel free, to enhance this description.
\subsection{Structure -- by Content}
......@@ -21,12 +16,11 @@ In Figure \ref{fig:algorithm}, the algorithmic representations of a monolithical
solution solution scheme is illustrated down to the element level.
\begin{figure}[hbt]
% \begin{tabular}{ l | l }
% \begin{minipage}[t]{0.48\textwidth}
\setcounter{thingCounter}{0}
\scriptsize
\sffamily
\begin{center}\parbox{0cm}{
\begin{tabbing}
\textbf{{\begin{turn}{45}\color{black}\numberThis{main}{init}\end{turn}}} \=
\textbf{{\begin{turn}{45}\color{dumuxBlue}\numberThis{time step}{prep}\end{turn}}} \=
......@@ -36,7 +30,6 @@ solution solution scheme is illustrated down to the element level.
\color{black}initialize \\
\color{black}\textbf{foreach} time step\\
\> \color{dumuxBlue}prepare update\\
\> \color{dumuxBlue}\textbf{foreach} \textsc{Newton} iteration \\
\> \> \color{Mulberry}\textbf{foreach} element \\
......@@ -59,354 +52,13 @@ solution solution scheme is illustrated down to the element level.
\> \color{dumuxBlue}- write result\\
\color{black}\textbf{endfor}\\
\color{black}finalize
\end{tabbing}
% \end{minipage}
%
% &
% TODO: revise second figure
% \begin{minipage}[t]{0.48\textwidth}
% \setcounter{thingCounter}{0}
%
% \scriptsize
% \sffamily
% \begin{tabbing}
% \textbf{{\begin{turn}{45}\color{black}1. main\end{turn}}} \=
% \textbf{{\begin{turn}{45}\color{dumuxBlue}2. time step\end{turn}}} \=
% \textbf{{\begin{turn}{45}\color{Mulberry}3. \textsc{IMPES/C}\end{turn}}} \=
% \textbf{{\begin{turn}{45}\color{dumuxYellow}4. element\end{turn}}} \= \\
% \\
% \color{black}initialize \\
% \color{black}\textbf{foreach} time step\\
%
% \> \color{dumuxBlue}prepare update\\
% \> \color{dumuxBlue}\textbf{foreach} \textsc{IMPES/C} step \\
% \> \> \color{Mulberry}\textbf{if} grid is adaptive\\
% \> \> \> \color{dumuxYellow}- calculate refinement indicator\\
% \> \> \> \color{dumuxYellow}- mark elements, adapt the grid\\
% \> \> \> \color{dumuxYellow}- map old solution to new grid\\
% \> \> \color{Mulberry}- calculate {flow field}\\
% \> \> \color{Mulberry}\textbf{foreach} element \\
%
% \> \> \> \color{dumuxYellow}- calculate element stiffness matrix \\
% \> \> \> \color{dumuxYellow}- assemble into global matrix \\
%
% \> \> \color{Mulberry} \textbf{endfor} \\
% \> \> \color{Mulberry} solve linear system\\
%
% \> \> \color{Mulberry}- calculate {transport} \\
% \> \> \color{Mulberry}\; (saturations, concentrations,...) \\
% \> \> \color{Mulberry}\textbf{foreach} element \\
% \> \> \> \color{dumuxYellow}-calculate update (explicitly) \\
% \> \> \> \color{dumuxYellow}- adapt time step ({CFL}-like criterion) \\
% \> \> \color{Mulberry}\textbf{endfor} \\
% \> \> \color{Mulberry}- update old solution \\
% \> \> \color{Mulberry}- postprocess (flash calculation, etc.)\\
% \> \color{dumuxBlue}\textbf{endfor}\\
% \> \color{dumuxBlue}- write result\\
% \color{black}\textbf{endfor}\\
% finalize
% \end{tabbing}
%
% \end{minipage}
% \end{tabular}
% \caption{Structure of a fully implicit (\textbf{left}) and a sequential
% (\textbf{right}) scheme in \Dumux.}
\end{tabbing}}
\end{center}
\caption{Structure of a monolithical solution scheme in \Dumux.}
\label{fig:algorithm}
\end{figure}
% \subsection{Structure -- by Implementation}
% \label{implementation}
% This section is supposed to help you in getting an idea how things are handled in
% \Dumux and in which files things are written down.
% This is not intuitivly clear, therefore it is mentioned for each \fbox{step-stone}.
% \textbf{called by} tells you from which file a function is
% accessed. \textbf{implemented in} tells you in which file the function is written
% down. The name of the function is set in \verb+typewriter+.
% Being a function is indicated by round brackets \verb+()+ but only the function
% name is given and not the full signature (arguments...) .
% Comments regarding the events within one step-stone are set \scriptsize{smaller}.
%
% \begin{landscape}
% \pagestyle{empty} % switch off headings and footer in order to get more space for the flowchart
% \setlength{\voffset}{4.2cm}
%
% % command for blocks
% \newcommand{\step}[6]{
% \begin{minipage}{7.5cm}
% {\tiny \color{#1}\texttt{#2} $\Rightarrow$ \texttt{#3}}\\
% \fcolorbox{#1}{white}{
% \begin{minipage}{7.0cm}
% \begin{scriptsize}
% \texttt{#4} \hfill \color{gray}in: #5\color{black}\\
% \hphantom{m}\begin{minipage}[t]{6.8cm}#6\end{minipage}
% \end{scriptsize}
% \end{minipage}}
% \end{minipage}
% }
%
% % command for the arrow with text
% \newcommand{\longArrow}[1]{
% \begin{minipage}[b]{7.5cm}
% \fcolorbox{white}{white}{
% \begin{minipage}[b]{7.0cm}
% \begin{center}
% \begin{scriptsize}
% $\overrightarrow{ %an arrow under which things may be written
% \begin{array}{c} % in order to be able to write multiple lines under the arrow
% #1\\
% \hphantom{\hspace{6.5cm}}
% \end{array}
% }$
% \end{scriptsize}
% \end{center}
% \end{minipage}%
% }
% \end{minipage}%
% \hphantom{ $\overrightarrow{}$}%
% }
%
% % command for the arrow between steps
% \newcommand{\shortArrow}{$\overrightarrow{}$}
%
% % command for marking things as model specific
% \newcommand{\modelSpecific}{\emph{model specific}\xspace}
%
% % the distance between two lines
% \newcommand{\dummyDistance}{\\[4\baselineskip]}
%
% % THE FLOW CHART STARTS HERE
% \noindent
% \step{black}{main()}{Dumux::start<ProblemTypeTag>() $\Rightarrow$ start\_()}{start\_()}{start.hh}%
% {start the simulation}
% \shortArrow
% \step{black}{start\_()}{timeManager.init()}{init()}{timemanager.hh}%
% {initialization}
% \shortArrow
% \step{black}{start\_()}{timeManager.run()}{run()}{timemanager.hh}%
% {time step management}
% \dummyDistance
% %
% \longArrow{
% \textnormal{\texttt{while(!finished)}}\\
% \textnormal{\color{black}main}
% \rightarrow \textnormal{\color{dumuxBlue}time step}
% }
% \step{dumuxBlue}{run()}{problem->timeIntegration()}{timeIntegration()}{implicitproblem.hh}%
% {execute time integration scheme}%
% \longArrow{
% \textnormal{define number of allowed \textsc{Newton} fails}\\
% \textnormal{(each halving dt)}
% }
% \dummyDistance
% %
% \step{dumuxBlue}{timeIntegration()}{model->update()}{update()}{implicitmodel.hh}%
% {sth like numerical model}
% \shortArrow
% \step{dumuxBlue}{update()}{solver.execute()}{execute()}{newtonmethod.hh}%
% {applying \textsc{Newton} method\\
% keeps track of things, catching errors}
% \longArrow{
% \textnormal{\color{dumuxBlue}time step}
% \rightarrow \textnormal{\color{Mulberry}Newton step}\\
% \texttt{while(ctl.newtonProceed()}\\
% \textnormal{uLastIter = uCurrentIter(model.uCur())}
% }
% \dummyDistance
% %
% \noindent
% \step{Mulberry}{execute() $\Rightarrow$ execute\_()}{jacobianAsm.assemble()}{assemble()}{implicitassembler.hh}%
% {linearize the problem:\\
% add all element contributions to global \textsc{Jacobian}
% and global residual}%
% \shortArrow
% \step{Mulberry}{assemble() $\Rightarrow$ asImp\_().assemble\_()}{resetSystem\_()}{resetSystem\_()}{implicitassembler.hh}%
% {set r.h.s. (i.e. residual)\\
% set \textsc{Jacobian} to zero }
% \longArrow{
% \textnormal{\color{Mulberry}Newton step}
% \rightarrow \textnormal{\color{dumuxYellow}element}\\
% \texttt{loop all elements}\\
% }
% \dummyDistance
% %
% \noindent
% \step{dumuxYellow}{assemble() $\Rightarrow$ asImp\_().assemble\_()}{asImp\_().assembleElement\_()}{assembleElement\_()}{e.g. boxassembler.hh}%
% {call local \textsc{Jacobian} and residual assembly}%
% \shortArrow
% \step{dumuxYellow}{assembleElement\_()}{model\_().localJacobian().assemble()}{assemble()}{implicitlocaljacobian.hh}%
% {set curr. element, update element's fin.vol.geom.\\
% reset local \textsc{Jacobian} to 0\\
% update types of boundaries on this element}%
% \shortArrow
% \step{dumuxYellow}{assemble()}{prevVolVars\_.update(),curVolVars\_.update()}{update()}{e.g. 2pvolumevariables.hh}%
% {call model (e.g. \texttt{2p})specific update of quantities defined for the volume:\\
% variables for the \emph{current} and \emph{previous} timestep}%
% \dummyDistance
% %
% \noindent
% \step{dumuxYellow}{update()}{completeFluidState()}{completeFluidState()}{e.g. 2pvolumevariables.hh}%
% {calculate all required fluid properties from the primary variables,
% here the fluid system does the real work:\\
% calculates, saves, and provides: densities, etc.}
% \shortArrow
% \step{dumuxYellow}{assemble()}{localResidual().eval()$\Rightarrow$asImp\_().eval()}{eval()}{e.g. implicitlocalresidual.hh}%
% {the element's local residual is calculated:\\
% see the next two stepstones}%
% \shortArrow
% \step{dumuxYellow}{eval()}{asImp\_().evalFluxes\_()}{evalFluxes\_()}{e.g. boxlocalresidual.hh}%
% {evaluate the fluxes going into each finite volume,
% this is \modelSpecific}
% \dummyDistance
% %
% \step{dumuxYellow}{evalFluxes\_()}{this$\rightarrow$asImp\_().computeFlux()}{computeFlux()}{e.g. 2plocalresidual.hh}%
% {this calculate the \modelSpecific fluxes (e.g. advective and diffusive)
% using the \texttt{FluxVariables}}
% \shortArrow
% \step{dumuxYellow}{eval()}{asImp\_().evalVolumeTerms\_()}{evalVolumeTerms\_()}{implicitlocalresidual.hh}%
% {evaluate the \modelSpecific storage and source terms for each finite volume}%
% \shortArrow
% \step{dumuxYellow}{eval()}{asImp\_().evalBoundary\_()}{evalBoundary\_()}{implicitlocalresidual.hh}%
% {evaluate the \modelSpecific boundary conditions}%
% \dummyDistance
% %
% \step{dumuxYellow}{assemble()}{asImp\_().evalPartialDerivative\_()}{evalPartialDerivative\_()}{e.g. implicitlocaljacobian.hh}%
% {actually calculate the element's (local) \textsc{Jacobian}\\
% matrix a property chooses backward/central/foward\\
% differences. here: central differences}
% \shortArrow
% \begin{minipage}{0.50\textwidth}
% \begin{scriptsize}\textnormal{approximation of partial derivatives: numerical differentiation}\end{scriptsize}\\
% \begin{scriptsize}\textnormal{add $\pm \epsilon$ solution, divide difference of residual by $2\epsilon$}\end{scriptsize}\\
% \begin{scriptsize}\textnormal{all partial derivatives for the element from the local \textsc{Jacobian} matrix}\end{scriptsize}\\
% $\left \lbrace
% \begin{tabular}{l}%these question marks are for the \verb, not meant as ``unclear''
% \verb?priVars[pvIdx]+=eps?\\
% \begin{scriptsize}\textnormal{this is adding eps to the current solution}\end{scriptsize}\\
% \verb?curVolVars_[scvIdx].update(+eps)?\\
% \begin{scriptsize}\textnormal{recalculate volume variables, having $\epsilon$ added}\end{scriptsize}\\
% \verb?localResidual().eval(+eps)?\\
% \begin{scriptsize}\textnormal{calculate local residual for modified solution as before: involves}\end{scriptsize}\\
% {\scriptsize $\begin{array}{l}
% \textnormal{- \textbf{computeFlux}}\\
% \textnormal{- \textbf{computeStorage}}\\
% \textnormal{- \textbf{computeSource}} \\
% \end{array}$} \\
% \verb?store the residual()?\\
% \verb?repeat for priVars[pvIdx]-=eps?\\
% \verb?derivative is (residual(+eps) - residual(-eps))/2eps?\\
% \end{tabular}
% \right .
% $
% \end{minipage}
% \dummyDistance
% %
% \step{dumuxYellow}{assemble\_()}{asImp\_().assembleElement\_()}{assembleElement\_()}{implicitassembler.hh}%
% {Residual of the current solution is now\\
% ``numerically differentiated'', for the element i.e.\\
% the local \textsc{Jacobian} matrix is calculated. }%
% \longArrow{
% \textnormal{The contribution of a single element is done.}\\
% \textnormal{Now, it needs to be added to the global quantities:}\\
% \textnormal{Add to global residual and global \textsc{Jacobian}}.}
% \step{dumuxYellow}{assemble\_()}{asImp\_().assembleElement\_()}{assembleElement\_()}{e.g. boxassembler.hh}
% {Add to global residual.:\\
% \texttt{resdidual\_[globI+=\\model\_().globalJacobian().resdidual(i)]}}
% \dummyDistance
% %
% \longArrow{
% \textnormal{loop vertices}\\
% \textnormal{of an element}
% }
% \step{dumuxYellow}{assemble\_()}{asImp\_().assembleElement\_()}{assembleElement\_()}{e.g. boxassembler.hh}
% {Add to global residual:\\
% \texttt{(*matrix\_)[globI][globJ] +=\\model\_().localJacobian().mat(i,j)}}
% \longArrow{
% \textbf{\textbf{\color{dumuxYellow}element}}
% \rightarrow \textbf{\color{Mulberry}Newton step}\\
% \textnormal{Assembling of elements to global quantities is done.}
% }
% \dummyDistance
% %
% \step{Mulberry}{execute\_()}{while(ctl.newtonProceed())}{newtonProceed()}{newtoncontroller.hh}%
% {Print information.\\
% Start/ stop timer.}%
%
% \longArrow{
% \textnormal{set delta Vector to zero} \\
% \textnormal{(this is what is}\\
% \textnormal{solved for later)}\\
% }
% \step{Mulberry}{execute\_()}{ctl.newtonSolveLinear()}{newtonSolveLinear()}{newtoncontroller.hh}%
% {Catching errors.\\
% Ask the linear solver to solve the system.\\
% i.e.: give \textsc{Jacobian}(matrix), delta(x), r.h.s.(residual) to linear solver\\
% $\nabla r(x^k) \cdot \Delta x^k = r(x^k)$\\
% tricky: each \textsc{Newton} step solves a linear system of equations.}%
% \shortArrow
% \step{Mulberry}{newtonSolveLinear()}{int converged = linearSolver\_.solve()}{solve()}{boxlinearsolver.hh}%
% {Solve the linear system with the chosen backend.}%
% \dummyDistance
% %
% \step{Mulberry}{execute\_()}{ctl.newtonUpdate()}{newtonUpdate()}{newtoncontroller.hh}%
% {We solved for the change in solution, but need the solution:\\
% Calculate current (this iteration) solution\\
% \quad from last (iteration) solution and current (iteration) change in solution:\\
% $x^{k+1} = x^k - \Delta x^k$ where $\Delta x^k = (\nabla r(x^k))^{-1} \cdot r(x^k)$}
% \shortArrow
% \step{Mulberry}{execute\_()}{ctl.newtonEndStep()}{newtonEndStep()}{newtoncontroller.hh}%
% {Increase counter for number of \textsc{Newton} steps.\\
% Print info.}%
% \longArrow{
% \textnormal{check whether to do another \textsc{Newton} iteration:} \\
% \textnormal{that is: check if the error is below tolerance or}\\
% \textnormal{maximum number of iterations was reached.}
% }
% \dummyDistance
% %
% \longArrow{
% \textbf{\textbf{\color{Mulberry}Newton step}}
% \rightarrow \textbf{\color{dumuxBlue}Time step}\\
% \textnormal{\textsc{Newton} done}\\
% \textnormal{if failed $\rightsquigarrow$ halve timestep size, restart loop}\\
% }
% \step{dumuxBlue}{execute\_()}{ctl.newtonEnd()}{newtonEnd()}{newtoncontroller.hh}%
% {Tell the controller we are done}%
% \shortArrow
% \step{dumuxBlue}{update()}{asImp\_().updateSuccessful()}{updateSuccessful()}{e.g. implicitmodel.hh}%
% {can be filled \modelSpecific}%
% \dummyDistance
% %
% \longArrow{
% \textnormal{in while(!finished)}
% }
% \step{dumuxBlue}{run()}{problem\_->postTimeStep()}{postTimeStep(),writeOutput()}{implicitproblem.hh}%
% {Give the problem the chance to post-process the solution.}%
% \longArrow{
% \textnormal{write output}\\
% \textnormal{uPrev $\leftarrow$ uCur}\\
% \textnormal{time += dt, timestepIdx++}\\
% \textnormal{deal with restart and episodes }
% }
% \dummyDistance
% %
% \step{dumuxBlue}{run()$\Rightarrow$setTimeStepSize(problem\_->nextTimeStepSize(dt))\\
% $\Rightarrow$nextTimeStepSize()}
% {newtonCtl\_.suggestTimestepSize()}{suggestTimestepSize()}{newtoncontroller.hh}%
% {Determine new time step size from number of \textsc{Newton} steps.}%
% \longArrow{
% \textbf{\color{dumuxBlue}Time step}
% \rightarrow \textbf{\color{black}main}\\
% \textnormal{loop until simulation is finished}
% }
%
% \end{landscape}
%
% \newpage
% % Original pagestyle (headings and footer) were switched off,
% % in order to get more space for the flowchart.
% \pagestyle{scrheadings}
% \normalsize
\subsection{Structure -- by Implementation}
A possible starting point to understand how the abovementioned algorithm is implemented within \Dumux,
is the example main file
\url{https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/releases/3.0/exercises/exercise-mainfile/exercise_1p_a.cc}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment