Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dumux
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
dumux-repositories
dumux
Commits
9a28187b
Commit
9a28187b
authored
6 years ago
by
Martin Schneider
Browse files
Options
Downloads
Patches
Plain Diff
[handbook] rename domain G to Omega
parent
12b07f0b
No related branches found
No related tags found
1 merge request
!1338
[handbook] Update for 3.0
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
doc/handbook/5_spatialdiscretizations.tex
+21
-22
21 additions, 22 deletions
doc/handbook/5_spatialdiscretizations.tex
with
21 additions
and
22 deletions
doc/handbook/5_spatialdiscretizations.tex
+
21
−
22
View file @
9a28187b
\section
{
Spatial Discretization Schemes
}
\label
{
spatialdiscretization
}
We discretize space with the cell-centered finite volume method (
\ref
{
box
}
), the box method (
\ref
{
cc
}
)
We discretize space with the cell-centered finite volume method (
\ref
{
cc
}
), the box method (
\ref
{
box
}
)
or a staggered grid scheme.
Grid adaption is available for both box and cell-centered finite volume method.
Note that the current implementation only ensures mass conservation for incompressible fluids.
In general, the spatial parameters, especially the porosity, have to be assigned on
the coarsest level of discretization.
...
...
@@ -13,7 +12,7 @@ the coarsest level of discretization.
The so called box method unites the advantages of the finite-volume (FV) and
finite-element (FE) methods.
First, the model domain
$
G
$
is discretized with a FE mesh consisting of nodes
First, the model domain
$
\Omega
$
is discretized with a FE mesh consisting of nodes
$
i
$
and corresponding elements
$
E
_
k
$
. Then, a secondary FV mesh is constructed
by connecting the midpoints and barycenters of the elements surrounding node
$
i
$
creating a box
$
B
_
i
$
around node
$
i
$
(see Figure
\ref
{
pc:box
}
a).
...
...
@@ -46,17 +45,17 @@ In the following, the discretization of the balance equation is going to be deri
From the
\textsc
{
Reynolds
}
transport theorem follows the general balance equation:
\begin{equation}
\underbrace
{
\int
_
G
\frac
{
\partial
}{
\partial
t
}
\:
u
\:
d
G
}_{
1
}
+
\underbrace
{
\int
_{
\partial
G
}
(
\mathbf
{
v
}
u +
\mathbf
w)
\cdot
\textbf
n
\:
d
\varGamma
}_{
2
}
=
\underbrace
{
\int
_
G
q
\:
d
G
}_{
3
}
\underbrace
{
\int
_
\Omega
\frac
{
\partial
}{
\partial
t
}
\:
u
\:
d
x
}_{
1
}
+
\underbrace
{
\int
_{
\partial
\Omega
}
(
\mathbf
{
v
}
u +
\mathbf
w)
\cdot
\textbf
n
\:
d
\varGamma
}_{
2
}
=
\underbrace
{
\int
_
\Omega
q
\:
d
x
}_{
3
}
\end{equation}
\begin{equation}
f(u) =
\int
_
G
\frac
{
\partial
u
}{
\partial
t
}
\:
d
G
+
\int
_{
G
}
\nabla
\cdot
\underbrace
{
\left
[ \mathbf{v} u + \mathbf w(u)\right]
}_{
F(u)
}
\:
d
G
-
\int
_
G
q
\:
d
G
= 0
f(u) =
\int
_
\Omega
\frac
{
\partial
u
}{
\partial
t
}
\:
d
x
+
\int
_{
\Omega
}
\nabla
\cdot
\underbrace
{
\left
[ \mathbf{v} u + \mathbf w(u)\right]
}_{
F(u)
}
\:
d
x
-
\int
_
\Omega
q
\:
d
x
= 0
\end{equation}
where term 1 describes the changes of entity
$
u
$
within a control volume over
time, term 2 the advective, diffusive and dispersive fluxes over the interfaces
of the control volume and term 3 is the source and sink term.
$
G
$
denotes the
of the control volume and term 3 is the source and sink term.
$
\Omega
$
denotes the
model domain and
$
F
(
u
)
=
F
(
\mathbf
v, p
)
=
F
(
\mathbf
v
(
x,t
)
, p
(
x,t
))
$
.
Like the FE method, the box method follows the principle of weighted residuals.
...
...
@@ -107,43 +106,43 @@ of the residual $\varepsilon$ with a weighting function $W_j$ and claiming that
this product has to vanish within the whole domain,
\begin{equation}
\int
_
G
W
_
j
\cdot
\varepsilon
\:
\overset
{
!
}{
=
}
\:
0
\qquad
\textrm
{
with
}
\qquad
\sum
_
j W
_
j =1
\int
_
\Omega
W
_
j
\cdot
\varepsilon
\:
\overset
{
!
}{
=
}
\:
0
\qquad
\textrm
{
with
}
\qquad
\sum
_
j W
_
j =1
\end{equation}
yields the following equation:
\begin{equation}
\int
_
G
W
_
j
\frac
{
\partial
\tilde
u
}{
\partial
t
}
\:
d
G
+
\int
_
G
W
_
j
\cdot
\left
[ \nabla \cdot F(\tilde u) \right]
\:
d
G
-
\int
_
G
W
_
j
\cdot
q
\:
d
G
=
\int
_
G
W
_
j
\cdot
\varepsilon
\:
d
G
\:
\overset
{
!
}{
=
}
\:
0 .
\int
_
\Omega
W
_
j
\frac
{
\partial
\tilde
u
}{
\partial
t
}
\:
d
x
+
\int
_
\Omega
W
_
j
\cdot
\left
[ \nabla \cdot F(\tilde u) \right]
\:
d
x
-
\int
_
\Omega
W
_
j
\cdot
q
\:
d
x
=
\int
_
\Omega
W
_
j
\cdot
\varepsilon
\:
d
x
\:
\overset
{
!
}{
=
}
\:
0 .
\end{equation}
Then, the chain rule and the
\textsc
{
Green-Gaussian
}
integral theorem are applied.
\begin{equation}
\int
_
G
W
_
j
\frac
{
\partial
\sum
_
i N
_
i
\hat
u
_
i
}{
\partial
t
}
\:
d
G
+
\int
_{
\partial
G
}
\left
[ W_j \cdot F(\tilde u)\right]
\cdot
\mathbf
n
\:
d
\varGamma
_
G
+
\int
_
G
\nabla
W
_
j
\cdot
F(
\tilde
u)
\:
d
G
-
\int
_
G
W
_
j
\cdot
q
\:
d
G
= 0
\int
_
\Omega
W
_
j
\frac
{
\partial
\sum
_
i N
_
i
\hat
u
_
i
}{
\partial
t
}
\:
d
x
+
\int
_{
\partial
\Omega
}
\left
[ W_j \cdot F(\tilde u)\right]
\cdot
\mathbf
n
\:
d
\varGamma
_
\Omega
+
\int
_
\Omega
\nabla
W
_
j
\cdot
F(
\tilde
u)
\:
d
x
-
\int
_
\Omega
W
_
j
\cdot
q
\:
d
x
= 0
\end{equation}
A mass lumping technique is applied by assuming that the storage capacity is
reduced to the nodes. This means that the integrals
$
M
_{
i,j
}
=
\int
_
G
W
_
j
\:
N
_
i
\:
d
G
$
reduced to the nodes. This means that the integrals
$
M
_{
i,j
}
=
\int
_
\Omega
W
_
j
\:
N
_
i
\:
d
x
$
are replaced by the mass lumping term
$
M
^{
lump
}_{
i,j
}$
which is defined as:
\begin{equation}
M
^{
lump
}_{
i,j
}
=
\begin{cases}
\int
_
G
W
_
j
\:
d
G
=
\int
_
G
N
_
i
\:
d
G
= V
_
i
&
i = j
\\
M
^{
lump
}_{
i,j
}
=
\begin{cases}
\int
_
\Omega
W
_
j
\:
d
x
=
\int
_
\Omega
N
_
i
\:
d
x
= V
_
i
&
i = j
\\
0
&
i
\neq
j
\\
\end{cases}
\end{equation}
where
$
V
_
i
$
is the volume of the FV box
$
B
_
i
$
associated with node
$
i
$
.
The application of this assumption in combination with
$
\int
_
G
W
_
j
\:
q
\:
d
G
=
V
_
i
\:
q
$
yields
$
\int
_
\Omega
W
_
j
\:
q
\:
d
x
=
V
_
i
\:
q
$
yields
\begin{equation}
V
_
i
\frac
{
\partial
\hat
u
_
i
}{
\partial
t
}
+
\int
_{
\partial
G
}
\left
[ W_j \cdot F(\tilde u)\right]
\cdot
\mathbf
n
\:
d
\varGamma
_
G
+
\int
_
G
\nabla
W
_
j
\cdot
F(
\tilde
u)
\:
d
G
- V
_
i
\cdot
q = 0
\,
.
+
\int
_{
\partial
\Omega
}
\left
[ W_j \cdot F(\tilde u)\right]
\cdot
\mathbf
n
\:
d
\varGamma
_
\Omega
+
\int
_
\Omega
\nabla
W
_
j
\cdot
F(
\tilde
u)
\:
d
x
- V
_
i
\cdot
q = 0
\,
.
\end{equation}
Defining the weighting function
$
W
_
j
$
to be piecewisely constant over a
...
...
This diff is collapsed.
Click to expand it.
Timo Koch
@timok
mentioned in commit
a47c325a
·
6 years ago
mentioned in commit
a47c325a
mentioned in commit a47c325a10eca6ea83d1b420584b0925f9a4de2f
Toggle commit list
Timo Koch
@timok
mentioned in merge request
!1428 (merged)
·
6 years ago
mentioned in merge request
!1428 (merged)
mentioned in merge request !1428
Toggle commit list
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment