Skip to content
Snippets Groups Projects
Commit aa204e10 authored by Yue Wang's avatar Yue Wang Committed by Timo Koch
Browse files

[geomechanics] add documentation in doxygen.

parent 90f6a356
No related branches found
No related tags found
1 merge request!3042[doc] add equations of geomechanics models in doxygen
...@@ -19,7 +19,27 @@ ...@@ -19,7 +19,27 @@
/*! /*!
* \file * \file
* \ingroup Elastic * \ingroup Elastic
* \brief Defines a type tag and some properties for the elastic geomechanical model * \brief A geomechanical model.
*
* This model describe the deformation of the solid body, using theory of linear elasticity:
\f[
\boldsymbol{\nabla}\cdot\boldsymbol{\sigma_s} + \mathbf{F} + \rho_s \mathbf{g} = \rho\ddot{\mathbf{u}}
\f]
* We assume the quasi-static conditions, so the acceleration term \f$ \rho\ddot{\mathbf{u}} \approx 0\f$.
*
* For isotropic materials, the stress tensor \f$ \boldsymbol{\sigma_s} \f$ can be calculated after Hookes' Law
\f[
{\boldsymbol {\sigma_s}}= \lambda \mathrm{tr}(\varepsilon) \boldsymbol{\mathrm I}+ 2G \varepsilon,
\f]
* with
\f[
{\boldsymbol {\varepsilon }}={\frac {1}{2}}\left[{\boldsymbol {\nabla }}\mathbf {u} +({\boldsymbol {\nabla }}\mathbf {u} )^{\mathrm {T} }\right].
\f]
*
* Gravity can be enabled or disabled via the property system.
*
* The equations are discretized using a vertex-centered finite volume (box) scheme as spatial discretization. The time discretization is not needed due to the quasi-static conditions.
* PrimaryVariables are the displacements in each direction \f$ \mathbf{u} \f$.
*/ */
#ifndef DUMUX_GEOMECHANICS_ELASTIC_MODEL_HH #ifndef DUMUX_GEOMECHANICS_ELASTIC_MODEL_HH
#define DUMUX_GEOMECHANICS_ELASTIC_MODEL_HH #define DUMUX_GEOMECHANICS_ELASTIC_MODEL_HH
......
...@@ -19,7 +19,32 @@ ...@@ -19,7 +19,32 @@
/*! /*!
* \file * \file
* \ingroup PoroElastic * \ingroup PoroElastic
* \brief Defines a type tag and some properties for the poroelastic geomechanical model * \brief A poroelastic geomechanical model
*
* The adapted geomechanical model describes the deformation of the solid matrix filled with fluids, using linear poro-elasticity:
\f[
\boldsymbol{\nabla}\cdot\boldsymbol{\sigma} + \mathbf{F} + \rho \mathbf{g} = \rho\ddot{\mathbf{u}}
\f]
* where the density of the matrix \f$ \rho = \phi \sum_{\beta} S_{\beta} \rho_{\beta} + (1-\phi) \rho_s\f$.
*
* We assume the quasi-static conditions, so the acceleration term \f$ \rho\ddot{\mathbf{u}} \approx 0\f$.
*
* For isotropic materials, the stress tensor \f$ \boldsymbol{\sigma} \f$ can be calculated after Hookes' Law, including the effective fluid pressure.
\f[
{\boldsymbol {\sigma}}= \lambda \mathrm{tr}(\varepsilon) \boldsymbol{\mathrm I}+ 2G \varepsilon - \alpha p_{\mathrm{eff}} \boldsymbol{\mathrm I},
\f]
* with
\f[
{\boldsymbol {\varepsilon }}={\frac {1}{2}}\left[{\boldsymbol {\nabla }}\mathbf {u} +({\boldsymbol {\nabla }}\mathbf {u} )^{\mathrm {T} }\right],
\f]
* and
\f[
p_{\mathrm{eff}} = \sum_{\beta} S_{\beta} p_{\beta}.
\f]
* Gravity can be enabled or disabled via the property system.
*
* The equations are discretized using a vertex-centered finite volume (box) scheme as spatial discretization. The time discretization is not needed due to the quasi-static conditions.
* PrimaryVariables are the displacements in each direction \f$ \mathbf{u} \f$.
*/ */
#ifndef DUMUX_GEOMECHANICS_POROELASTIC_MODEL_HH #ifndef DUMUX_GEOMECHANICS_POROELASTIC_MODEL_HH
#define DUMUX_GEOMECHANICS_POROELASTIC_MODEL_HH #define DUMUX_GEOMECHANICS_POROELASTIC_MODEL_HH
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment