Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
BayesValidRox
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
inversemodeling
BayesValidRox
Commits
3a6bd6a7
Commit
3a6bd6a7
authored
3 years ago
by
Farid Mohammadi
Browse files
Options
Downloads
Patches
Plain Diff
[PA-A][PNM] update main script.
parent
80564f89
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py
+14
-10
14 additions, 10 deletions
BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py
with
14 additions
and
10 deletions
BayesValidRox/tests/PA-A/ffpm_validation_stokespnm.py
+
14
−
10
View file @
3a6bd6a7
...
@@ -117,7 +117,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
...
@@ -117,7 +117,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
Inputs
.
Marginals
[
0
].
InputValues
=
stats
.
uniform
(
loc
=
5.0e-04
,
scale
=
1.5e-03
-
5.0e-04
).
rvs
(
size
=
MCSize
)
Inputs
.
Marginals
[
0
].
InputValues
=
stats
.
uniform
(
loc
=
5.0e-04
,
scale
=
1.5e-03
-
5.0e-04
).
rvs
(
size
=
MCSize
)
Inputs
.
addMarginals
()
#TransmissibilityTotal '$g_{t,}$'
Inputs
.
addMarginals
()
#TransmissibilityTotal '$g_{t,}$'
Inputs
.
Marginals
[
1
].
Name
=
'
$g_{
t
}$
'
# [1.0e-7, 1.0e-05]
Inputs
.
Marginals
[
1
].
Name
=
'
$g_{
ij
}$
'
# [1.0e-7, 1.0e-05]
Inputs
.
Marginals
[
1
].
InputValues
=
stats
.
uniform
(
loc
=
1e-7
,
scale
=
1e-5
-
1e-7
).
rvs
(
size
=
MCSize
)
Inputs
.
Marginals
[
1
].
InputValues
=
stats
.
uniform
(
loc
=
1e-7
,
scale
=
1e-5
-
1e-7
).
rvs
(
size
=
MCSize
)
# Inputs.addMarginals() #TransmissibilityThroat '$g_{t,ij}$'
# Inputs.addMarginals() #TransmissibilityThroat '$g_{t,ij}$'
...
@@ -377,7 +377,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
...
@@ -377,7 +377,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
# Plot posterior predictive
# Plot posterior predictive
postPredictiveplot
(
PCEModel
.
ModelObj
.
Name
,
errorPerc
,
averaging
,
postPredictiveplot
(
PCEModel
.
ModelObj
.
Name
,
errorPerc
,
averaging
,
inletLoc
=
inletLoc
,
case
=
'
Calib
'
,
bins
=
20
)
inletLoc
=
inletLoc
,
case
=
'
Calib
'
,
bins
=
20
)
return
BayesCalib
#=====================================================
#=====================================================
#================== VALIDATION =====================
#================== VALIDATION =====================
#=====================================================
#=====================================================
...
@@ -386,14 +386,18 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
...
@@ -386,14 +386,18 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
ValidInputs
.
addMarginals
()
#VyMaxTop
ValidInputs
.
addMarginals
()
#VyMaxTop
ValidInputs
.
Marginals
[
0
].
Name
=
'
$V^{top}$
'
ValidInputs
.
Marginals
[
0
].
Name
=
'
$V^{top}$
'
ValidInputs
.
Marginals
[
0
].
InputValues
=
BayesCalib
.
Posterior_df
[
'
$V^{top}$
'
]
ValidInputs
.
Marginals
[
0
].
InputValues
=
BayesCalib
.
Posterior_df
[
'
$V^{top}$
'
]
ValidInputs
.
addMarginals
()
#TransmissibilityTotal
ValidInputs
.
Marginals
[
1
].
Name
=
'
$g_{ij}$
'
ValidInputs
.
Marginals
[
1
].
InputValues
=
BayesCalib
.
Posterior_df
[
'
$g_{ij}$
'
]
# ValidInputs.addMarginals() #TransmissibilityThroat
# ValidInputs.Marginals[1].Name = '$g_{t,ij}$'
# ValidInputs.Marginals[1].InputValues = BayesCalib.Posterior_df['$g_{t,ij}$']
ValidInputs
.
addMarginals
()
#TransmissibilityThroat
# ValidInputs.addMarginals() #TransmissibilityHalfPore
ValidInputs
.
Marginals
[
1
].
Name
=
'
$g_{t,ij}$
'
# ValidInputs.Marginals[2].Name = '$g_{p,i}$'
ValidInputs
.
Marginals
[
1
].
InputValues
=
BayesCalib
.
Posterior_df
[
'
$g_{t,ij}$
'
]
# ValidInputs.Marginals[2].InputValues = BayesCalib.Posterior_df['$g_{p,i}$']
ValidInputs
.
addMarginals
()
#TransmissibilityHalfPore
ValidInputs
.
Marginals
[
2
].
Name
=
'
$g_{p,i}$
'
ValidInputs
.
Marginals
[
2
].
InputValues
=
BayesCalib
.
Posterior_df
[
'
$g_{p,i}$
'
]
ValidInputs
.
addMarginals
()
ValidInputs
.
addMarginals
()
ValidInputs
.
Marginals
[
3
].
Name
=
'
$
\\
beta_{pore}$
'
ValidInputs
.
Marginals
[
3
].
Name
=
'
$
\\
beta_{pore}$
'
...
@@ -597,7 +601,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
...
@@ -597,7 +601,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
# nTotalSamples = 200 #100 Total No. of orig. Model runs for surrogate training
# nTotalSamples = 200 #100 Total No. of orig. Model runs for surrogate training
# nBootstrapItr = 1000 # No. of bootstraping iterations for Bayesian analysis
# nBootstrapItr = 1000 # No. of bootstraping iterations for Bayesian analysis
# BootstrapNoise = 0.005 # Noise amount for bootstraping in Bayesian analysis
# BootstrapNoise = 0.005 # Noise amount for bootstraping in Bayesian analysis
perturbedData
=
np
.
loadtxt
(
'
./data/perturbedValidData_squared_inclusion_topInflow.csv
'
,
delimiter
=
'
,
'
)
#
perturbedData = np.loadtxt('./data/perturbedValidData_squared_inclusion_topInflow.csv',delimiter=',')
# perturbedData = np.loadtxt('./data/perturbedValidData_squared_inclusion_leftInflow.csv',delimiter=',')
# perturbedData = np.loadtxt('./data/perturbedValidData_squared_inclusion_leftInflow.csv',delimiter=',')
# perturbedData = np.loadtxt('./data/perturbedValidDataAvg_squared_inclusion_topInflow.csv',delimiter=',')
# perturbedData = np.loadtxt('./data/perturbedValidDataAvg_squared_inclusion_topInflow.csv',delimiter=',')
# perturbedData = np.loadtxt('./data/perturbedValidDataAvg_squared_inclusion_leftInflow.csv',delimiter=',')
# perturbedData = np.loadtxt('./data/perturbedValidDataAvg_squared_inclusion_leftInflow.csv',delimiter=',')
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment