Skip to content
Snippets Groups Projects
Commit 3a6bd6a7 authored by Farid Mohammadi's avatar Farid Mohammadi
Browse files

[PA-A][PNM] update main script.

parent 80564f89
No related branches found
No related tags found
No related merge requests found
...@@ -117,7 +117,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm ...@@ -117,7 +117,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
Inputs.Marginals[0].InputValues = stats.uniform(loc=5.0e-04, scale=1.5e-03-5.0e-04).rvs(size=MCSize) Inputs.Marginals[0].InputValues = stats.uniform(loc=5.0e-04, scale=1.5e-03-5.0e-04).rvs(size=MCSize)
Inputs.addMarginals() #TransmissibilityTotal '$g_{t,}$' Inputs.addMarginals() #TransmissibilityTotal '$g_{t,}$'
Inputs.Marginals[1].Name = '$g_{t}$' # [1.0e-7, 1.0e-05] Inputs.Marginals[1].Name = '$g_{ij}$' # [1.0e-7, 1.0e-05]
Inputs.Marginals[1].InputValues = stats.uniform(loc=1e-7, scale=1e-5-1e-7).rvs(size=MCSize) Inputs.Marginals[1].InputValues = stats.uniform(loc=1e-7, scale=1e-5-1e-7).rvs(size=MCSize)
# Inputs.addMarginals() #TransmissibilityThroat '$g_{t,ij}$' # Inputs.addMarginals() #TransmissibilityThroat '$g_{t,ij}$'
...@@ -377,7 +377,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm ...@@ -377,7 +377,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
# Plot posterior predictive # Plot posterior predictive
postPredictiveplot(PCEModel.ModelObj.Name, errorPerc, averaging, postPredictiveplot(PCEModel.ModelObj.Name, errorPerc, averaging,
inletLoc=inletLoc, case='Calib', bins=20) inletLoc=inletLoc, case='Calib', bins=20)
return BayesCalib
#===================================================== #=====================================================
#================== VALIDATION ===================== #================== VALIDATION =====================
#===================================================== #=====================================================
...@@ -386,14 +386,18 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm ...@@ -386,14 +386,18 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
ValidInputs.addMarginals() #VyMaxTop ValidInputs.addMarginals() #VyMaxTop
ValidInputs.Marginals[0].Name = '$V^{top}$' ValidInputs.Marginals[0].Name = '$V^{top}$'
ValidInputs.Marginals[0].InputValues = BayesCalib.Posterior_df['$V^{top}$'] ValidInputs.Marginals[0].InputValues = BayesCalib.Posterior_df['$V^{top}$']
ValidInputs.addMarginals() #TransmissibilityTotal
ValidInputs.Marginals[1].Name = '$g_{ij}$'
ValidInputs.Marginals[1].InputValues = BayesCalib.Posterior_df['$g_{ij}$']
# ValidInputs.addMarginals() #TransmissibilityThroat
# ValidInputs.Marginals[1].Name = '$g_{t,ij}$'
# ValidInputs.Marginals[1].InputValues = BayesCalib.Posterior_df['$g_{t,ij}$']
ValidInputs.addMarginals() #TransmissibilityThroat # ValidInputs.addMarginals() #TransmissibilityHalfPore
ValidInputs.Marginals[1].Name = '$g_{t,ij}$' # ValidInputs.Marginals[2].Name = '$g_{p,i}$'
ValidInputs.Marginals[1].InputValues = BayesCalib.Posterior_df['$g_{t,ij}$'] # ValidInputs.Marginals[2].InputValues = BayesCalib.Posterior_df['$g_{p,i}$']
ValidInputs.addMarginals() #TransmissibilityHalfPore
ValidInputs.Marginals[2].Name = '$g_{p,i}$'
ValidInputs.Marginals[2].InputValues = BayesCalib.Posterior_df['$g_{p,i}$']
ValidInputs.addMarginals() ValidInputs.addMarginals()
ValidInputs.Marginals[3].Name = '$\\beta_{pore}$' ValidInputs.Marginals[3].Name = '$\\beta_{pore}$'
...@@ -597,7 +601,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm ...@@ -597,7 +601,7 @@ def run(params, averaging=True,errorPerc=0.05, inletLoc='top', PCEEDMethod='norm
# nTotalSamples = 200 #100 Total No. of orig. Model runs for surrogate training # nTotalSamples = 200 #100 Total No. of orig. Model runs for surrogate training
# nBootstrapItr = 1000 # No. of bootstraping iterations for Bayesian analysis # nBootstrapItr = 1000 # No. of bootstraping iterations for Bayesian analysis
# BootstrapNoise = 0.005 # Noise amount for bootstraping in Bayesian analysis # BootstrapNoise = 0.005 # Noise amount for bootstraping in Bayesian analysis
perturbedData = np.loadtxt('./data/perturbedValidData_squared_inclusion_topInflow.csv',delimiter=',') # perturbedData = np.loadtxt('./data/perturbedValidData_squared_inclusion_topInflow.csv',delimiter=',')
# perturbedData = np.loadtxt('./data/perturbedValidData_squared_inclusion_leftInflow.csv',delimiter=',') # perturbedData = np.loadtxt('./data/perturbedValidData_squared_inclusion_leftInflow.csv',delimiter=',')
# perturbedData = np.loadtxt('./data/perturbedValidDataAvg_squared_inclusion_topInflow.csv',delimiter=',') # perturbedData = np.loadtxt('./data/perturbedValidDataAvg_squared_inclusion_topInflow.csv',delimiter=',')
# perturbedData = np.loadtxt('./data/perturbedValidDataAvg_squared_inclusion_leftInflow.csv',delimiter=',') # perturbedData = np.loadtxt('./data/perturbedValidDataAvg_squared_inclusion_leftInflow.csv',delimiter=',')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment