Skip to content
Snippets Groups Projects
Commit 7636dbee authored by Mathis Kelm's avatar Mathis Kelm
Browse files

Merge branch 'feature/biomin-slides' into 'master'

Cleanup biomin slides

See merge request !168
parents b92bbaf0 a957e61c
No related branches found
No related tags found
1 merge request!168Cleanup biomin slides
Pipeline #30404 passed
......@@ -122,10 +122,10 @@ Neglecting microbial growth and decay, attachment and detachment
- Urea hydrolysis
$$
\begin{aligned}
\underset{\text{urea}}{CO(NH_2)_2} + 2 H_2O
\underset{\text{urea}}{\mathrm{CO(NH_2)_2}} + 2 \mathrm{H_2O}
\overset{\text{urease}}{\rightarrow}
\\
\underset{\text{ammonia}}{2NH_3} + \underset{\text{carbonic acid}}{H_2CO_3}
\underset{\text{ammonia}}{\mathrm{2NH_3}} + \underset{\text{carbonic acid}}{\mathrm{H_2CO_3}}
\end{aligned}
$$
:::
......@@ -135,7 +135,7 @@ $$
Here: Ureolytic microbes produce the enzyme urease (MICP)
$$
CO(NH_2)_2 + 2 H_2O + Ca^{2+} \rightarrow 2 NH_4^+ + CaCO_3
\mathrm{CO(NH_2)_2 + 2 H_2O + Ca^{2+} \rightarrow 2 NH_4^+ + CaCO_3}
$$
Different reactions in detail:
......@@ -144,12 +144,12 @@ Different reactions in detail:
$$
\begin{array}{lr}
CO(NH_2)_2 + 2 H_2O \rightarrow 2 NH_3 + H_2CO_3 \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
\mathrm{CO(NH_2)_2 + 2 H_2O \rightarrow 2 NH_3 + H_2CO_3} \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
& \text{ureolysis} \\
H_2CO_3 \leftrightarrow HCO_3^- + H^+ & \text{dissociation of carbonic acid} \\
HCO_3^- \leftrightarrow CO_3^{2-} + H^+ & \text{dissociation of bicarbonate ion} \\
2 NH_4^+ \leftrightarrow 2 NH_3 + 2 H^+ & \text{dissociation of ammonia} \\
Ca^{2+} + CO_3^{2-} \leftrightarrow CaCO_3 \downarrow & \text{calcite precipitation/dissolution}
\mathrm{H_2CO_3 \rightleftharpoons HCO_3^- + H^+} & \text{dissociation of carbonic acid} \\
\mathrm{HCO_3^- \rightleftharpoons CO_3^{2-} + H^+} & \text{dissociation of bicarbonate ion} \\
\mathrm{2 NH_4^+ \rightleftharpoons 2 NH_3 + 2 H^+} & \text{dissociation of ammonia} \\
\mathrm{Ca^{2+} + CO_3^{2-} \rightleftharpoons CaCO_3 \downarrow} & \text{calcite precipitation/dissolution}
\end{array}
$$
......@@ -166,7 +166,7 @@ $$
$$
\mathrm{
\underset{\text{calcium}}{Ca^{2+}} + \underset{\text{carbonate}}{CO_3^{2-}}
\leftrightarrow \underset{\text{calcite}}{CaCO_3 \downarrow}
\rightleftharpoons \underset{\text{calcite}}{CaCO_3 \downarrow}
}
$$
:::
......@@ -242,7 +242,7 @@ $$
\begin{aligned}
\qquad\qquad & \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
\text{Precipitation rate:} \\
r_\text{precip} &= f\; \left( A_\text{interface}, \Omega = \frac{\left[\mathrm{Ca}^{2+}\right]\left[CO_3^{2-}\right]}{K_\text{sp}}, T \right)
r_\text{precip} &= f\; \left( A_\text{interface}, \Omega = \frac{\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO_3}^{2-}\right]}{K_\text{sp}}, T \right)
\\
\qquad\qquad & \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\! \!\!\!\!\!\!
\text{For this exercise:} \\
......@@ -266,7 +266,7 @@ K &= K_0 \left(\frac{1-\phi_0}{1-\phi}\right)^2 \left(\frac{\phi}{\phi_0}\right)
\\
\text{or}&
\\
K &= K_0 \left( \frac{1-\phi_0}{1-\phi} \right)^\eta
K &= K_0 \left( \frac{\phi}{\phi_0} \right)^\eta
\end{aligned}
$$
......@@ -305,6 +305,8 @@ NumEqVector source(const Element& element,
## Specific Implementations
* Update porosity in dumux/material/fluidmatrixinteractions/porosityprecipitation.hh
<section style="font-size: 0.9em">
```cpp
auto priVars = evalSolution(element, element.geometry(), elemSol, scv.center());
......@@ -317,6 +319,8 @@ using std::max;
return max(minPoro, refPoro - sumPrecipitates);
```
</section>
## Specific Implementations
* Update permeability in /material/fluidmatrixinteractions/permeabilitykozenycarman.hh
......@@ -344,10 +348,10 @@ Academic problem setup
* 2 aquifers with sealing aquitard
* Upper aquifer: "drinking water"
* Lower aquifer: "$CO_2$ storage"
* Lower aquifer: "$\mathrm{CO_2}$ storage"
* Problem:
* Leakage pathway
* Stored $CO_2$ would migrate to drinking water aquifer!
* Stored $\mathrm{CO_2}$ would migrate to drinking water aquifer!
* Biomineralization injection could "seal" the leakage pathway
:::
::: {.column width=55%}
......@@ -359,12 +363,11 @@ Academic problem setup
1. Get familiar with the code
2. Implement the simplified chemical reactions
* Add kinetic reaction rates to chemistry-file
* Use source()-function to link chemistry-file to problem
3. Vary parameters, so that leakage pathway is "sealed" (porosity <0.07)
4. Implement new boundary condition for $CO_2$-injection in lower aquifer
5. Exchange the permeability law from Kozeny-Carman to a Power Law
6. Use tabulated values for $CO_2$
3. Use source()-function to link chemistry-file to problem
4. Vary parameters, so that leakage pathway is "sealed" (porosity $<0.07$)
5. Implement new boundary condition for $\mathrm{CO_2}$-injection in lower aquifer
6. Exchange the permeability law from Kozeny-Carman to a Power Law
7. Use tabulated values for $\mathrm{CO_2}$
## Exercise
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment