Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dumux-course
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
dumux-repositories
dumux-course
Commits
7636dbee
Commit
7636dbee
authored
2 years ago
by
Mathis Kelm
Browse files
Options
Downloads
Plain Diff
Merge branch 'feature/biomin-slides' into 'master'
Cleanup biomin slides See merge request
!168
parents
b92bbaf0
a957e61c
No related branches found
Branches containing commit
No related tags found
Tags containing commit
1 merge request
!168
Cleanup biomin slides
Pipeline
#30404
passed
2 years ago
Stage: deploy
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
slides/biomin.md
+22
-19
22 additions, 19 deletions
slides/biomin.md
with
22 additions
and
19 deletions
slides/biomin.md
+
22
−
19
View file @
7636dbee
...
...
@@ -122,10 +122,10 @@ Neglecting microbial growth and decay, attachment and detachment
-
Urea hydrolysis
$$
\b
egin{aligned}
\u
nderset{
\t
ext{urea}}{CO(NH_2)_2} + 2 H_2O
\u
nderset{
\t
ext{urea}}{
\m
athrm{
CO(NH_2)_2}
}
+ 2
\m
athrm{
H_2O
}
\o
verset{
\t
ext{urease}}{
\r
ightarrow}
\\
\u
nderset{
\t
ext{ammonia}}{2NH_3} +
\u
nderset{
\t
ext{carbonic acid}}{H_2CO_3}
\u
nderset{
\t
ext{ammonia}}{
\m
athrm{
2NH_3}
}
+
\u
nderset{
\t
ext{carbonic acid}}{
\m
athrm{
H_2CO_3}
}
\e
nd{aligned}
$$
:::
...
...
@@ -135,7 +135,7 @@ $$
Here: Ureolytic microbes produce the enzyme urease (MICP)
$$
CO(NH_2)_2 + 2 H_2O + Ca^{2+}
\r
ightarrow 2 NH_4^+ + CaCO_3
\m
athrm{
CO(NH_2)_2 + 2 H_2O + Ca^{2+}
\r
ightarrow 2 NH_4^+ + CaCO_3
}
$$
Different reactions in detail:
...
...
@@ -144,12 +144,12 @@ Different reactions in detail:
$$
\b
egin{array}{lr}
CO(NH_2)_2 + 2 H_2O
\r
ightarrow 2 NH_3 + H_2CO_3
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\m
athrm{
CO(NH_2)_2 + 2 H_2O
\r
ightarrow 2 NH_3 + H_2CO_3
}
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
&
\t
ext{ureolysis}
\\
H_2CO_3
\
l
eft
right
arrow
HCO_3^- + H^+ &
\t
ext{dissociation of carbonic acid}
\\
HCO_3^-
\
l
eft
right
arrow
CO_3^{2-} + H^+ &
\t
ext{dissociation of bicarbonate ion}
\\
2 NH_4^+
\
l
eft
right
arrow
2 NH_3 + 2 H^+ &
\t
ext{dissociation of ammonia}
\\
Ca^{2+} + CO_3^{2-}
\
l
eft
right
arrow
CaCO_3
\d
ownarrow &
\t
ext{calcite precipitation/dissolution}
\m
athrm{
H_2CO_3
\r
ight
leftharpoons
HCO_3^- + H^+
}
&
\t
ext{dissociation of carbonic acid}
\\
\m
athrm{
HCO_3^-
\r
ight
leftharpoons
CO_3^{2-} + H^+
}
&
\t
ext{dissociation of bicarbonate ion}
\\
\m
athrm{
2 NH_4^+
\r
ight
leftharpoons
2 NH_3 + 2 H^+
}
&
\t
ext{dissociation of ammonia}
\\
\m
athrm{
Ca^{2+} + CO_3^{2-}
\r
ight
leftharpoons
CaCO_3
\d
ownarrow
}
&
\t
ext{calcite precipitation/dissolution}
\e
nd{array}
$$
...
...
@@ -166,7 +166,7 @@ $$
$$
\m
athrm{
\u
nderset{
\t
ext{calcium}}{Ca^{2+}} +
\u
nderset{
\t
ext{carbonate}}{CO_3^{2-}}
\
l
eftrightarrow
\u
nderset{
\t
ext{calcite}}{CaCO_3
\d
ownarrow}
\
r
ightleftharpoons
\u
nderset{
\t
ext{calcite}}{CaCO_3
\d
ownarrow}
}
$$
:::
...
...
@@ -242,7 +242,7 @@ $$
\b
egin{aligned}
\q
quad
\q
quad &
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\t
ext{Precipitation rate:}
\\
r_
\t
ext{precip} &= f
\;
\l
eft( A_
\t
ext{interface},
\O
mega =
\f
rac{
\l
eft[
\m
athrm{Ca}^{2+}
\r
ight]
\l
eft[CO_3^{2-}
\r
ight]}{K_
\t
ext{sp}}, T
\r
ight)
r_
\t
ext{precip} &= f
\;
\l
eft( A_
\t
ext{interface},
\O
mega =
\f
rac{
\l
eft[
\m
athrm{Ca}^{2+}
\r
ight]
\l
eft[
\m
athrm{
CO_3
}
^{2-}
\r
ight]}{K_
\t
ext{sp}}, T
\r
ight)
\\
\q
quad
\q
quad &
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\!\!\!\!\!\!
\t
ext{For this exercise:}
\\
...
...
@@ -266,7 +266,7 @@ K &= K_0 \left(\frac{1-\phi_0}{1-\phi}\right)^2 \left(\frac{\phi}{\phi_0}\right)
\\
\t
ext{or}&
\\
K &= K_0
\l
eft(
\f
rac{
1-
\p
hi
_0}{1-
\p
hi}
\r
ight)^
\e
ta
K &= K_0
\l
eft(
\f
rac{
\p
hi
}{
\p
hi
_0
}
\r
ight)^
\e
ta
\e
nd{aligned}
$$
...
...
@@ -305,6 +305,8 @@ NumEqVector source(const Element& element,
## Specific Implementations
*
Update porosity in dumux/material/fluidmatrixinteractions/porosityprecipitation.hh
<section
style=
"font-size: 0.9em"
>
```
cpp
…
auto
priVars
=
evalSolution
(
element
,
element
.
geometry
(),
elemSol
,
scv
.
center
());
...
...
@@ -317,6 +319,8 @@ using std::max;
return
max
(
minPoro
,
refPoro
-
sumPrecipitates
);
…
```
</section>
## Specific Implementations
*
Update permeability in /material/fluidmatrixinteractions/permeabilitykozenycarman.hh
...
...
@@ -344,10 +348,10 @@ Academic problem setup
*
2 aquifers with sealing aquitard
*
Upper aquifer: "drinking water"
*
Lower aquifer: "$CO_2$ storage"
*
Lower aquifer: "$
\m
athrm{
CO_2
}
$ storage"
*
Problem:
*
Leakage pathway
*
Stored $CO_2$ would migrate to drinking water aquifer!
*
Stored $
\m
athrm{
CO_2
}
$ would migrate to drinking water aquifer!
*
Biomineralization injection could "seal" the leakage pathway
:::
::: {.column width=55%}
...
...
@@ -359,12 +363,11 @@ Academic problem setup
1.
Get familiar with the code
2.
Implement the simplified chemical reactions
*
Add kinetic reaction rates to chemistry-file
*
Use source()-function to link chemistry-file to problem
3.
Vary parameters, so that leakage pathway is "sealed" (porosity <0.07)
4.
Implement new boundary condition for $CO_2$-injection in lower aquifer
5.
Exchange the permeability law from Kozeny-Carman to a Power Law
6.
Use tabulated values for $CO_2$
3.
Use source()-function to link chemistry-file to problem
4.
Vary parameters, so that leakage pathway is "sealed" (porosity $<0.07$)
5.
Implement new boundary condition for $
\m
athrm{CO_2}$-injection in lower aquifer
6.
Exchange the permeability law from Kozeny-Carman to a Power Law
7.
Use tabulated values for $
\m
athrm{CO_2}$
## Exercise
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment