Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
dumux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
88
Issues
88
List
Boards
Labels
Service Desk
Milestones
Merge Requests
62
Merge Requests
62
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
dumuxrepositories
dumux
Commits
eb9ea429
Commit
eb9ea429
authored
Dec 11, 2018
by
Martin Schneider
2
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[handbook][disc] Correction of indices used for the box method
parent
9541a0b2
Changes
1
Hide whitespace changes
Inline
Sidebyside
Showing
1 changed file
with
10 additions
and
9 deletions
+10
9
doc/handbook/5_spatialdiscretizations.tex
doc/handbook/5_spatialdiscretizations.tex
+10
9
No files found.
doc/handbook/5_spatialdiscretizations.tex
View file @
eb9ea429
...
...
@@ 146,19 +146,19 @@ Here, a mass lumping technique is applied by assuming that the storage capacity
reduced to the nodes. This means that the integrals
$
M
_{
i,j
}
=
\int
_{
B
_
j
}
N
_
i
\:
dx
$
are replaced by some mass lumped terms
$
M
^{
lump
}_{
i,j
}$
which are defined as
\begin{equation}
M
^{
lump
}_{
i,j
}
=
\begin{cases}
V
_
i
&
i = j
\\
0
&
i
\neq
j.
\\
M
^{
lump
}_{
i,j
}
=
\begin{cases}
V
_
j
&
j = i
\\
0
&
j
\neq
i,
\\
\end{cases}
\end{equation}
where
$
V
_
i
$
is the volume of the FV box
$
B
_
i
$
associated with node
$
i
$
.
where
$
V
_
j
$
is the volume of the FV box
$
B
_
j
$
associated with node
$
j
$
.
The application of this assumption yields
\begin{equation}
\label
{
eq:disc1
}
V
_
i
\frac
{
\partial
\hat
u
_
i
}{
\partial
t
}
+
\int
_{
\partial
B
_
j
}
F(
\tilde
u)
\cdot
\mathbf
n
\:
d
\varGamma
_{
B
_
j
}
 Q
_
i
= 0,
V
_
j
\frac
{
\partial
\hat
u
_
j
}{
\partial
t
}
+
\int
_{
\partial
B
_
j
}
F(
\tilde
u)
\cdot
\mathbf
n
\:
d
\varGamma
_{
B
_
j
}
 Q
_
j
= 0,
\end{equation}
where
$
Q
_
i
$
is an approximation (using some quadrature rule) of the integrated source/sink term
$
\int
_{
B
_
j
}
q
\:
dx
$
.
where
$
Q
_
j
$
is an approximation (using some quadrature rule) of the integrated source/sink term
$
\int
_{
B
_
j
}
q
\:
dx
$
.
Using an implicit Euler time discretization finally
leads to the discretized form which will be applied to the mathematical
...
...
@@ 166,10 +166,11 @@ flow and transport equations:
\begin{equation}
\label
{
eq:discfin
}
V
_
i
\frac
{
\hat
u
_
i
^{
n+1
}

\hat
u
_
i
^{
n
}}{
\Delta
t
}
+
\int
_{
\partial
B
_
i
}
F(
\tilde
u
^{
n+1
}
)
\cdot
\mathbf
n
\;
d
{
\varGamma
}_{
B
_
i
}
 Q
_
i
^{
n+1
}
\:
= 0.
V
_
j
\frac
{
\hat
u
_
j
^{
n+1
}

\hat
u
_
j
^{
n
}}{
\Delta
t
}
+
\int
_{
\partial
B
_
j
}
F(
\tilde
u
^{
n+1
}
)
\cdot
\mathbf
n
\;
d
{
\varGamma
}_{
B
_
j
}
 Q
_
j
^{
n+1
}
\:
= 0.
\end{equation}
Equation
\eqref
{
eq:discfin
}
has to be fulfilled for each box
$
B
_
j
$
.
\subsection
{
Cell Centered Finite Volume Method  A Short Introduction
}
\label
{
cc
}
...
...
Timo Koch
@timok
mentioned in commit
a47c325a
·
Dec 18, 2018
mentioned in commit
a47c325a
mentioned in commit a47c325a10eca6ea83d1b420584b0925f9a4de2f
Toggle commit list
Timo Koch
@timok
mentioned in merge request
!1428 (merged)
·
Dec 18, 2018
mentioned in merge request
!1428 (merged)
mentioned in merge request !1428
Toggle commit list
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment