### [doxygen,freeflow]

- adaption to style of other models (replaced use of \nabla by use of div or grad)
- replaced use of mass fraction with mole fraction in diffusion term and added
comment about use of binary diffusion
- fixed typos

[doxygen,material]
- fixed typos and line break

git-svn-id: svn://svn.iws.uni-stuttgart.de/DUMUX/dumux/trunk@15207 2fb0f335-1f38-0410-981e-8018bf24f1b0
parent 272e9bde
 ... ... @@ -38,29 +38,29 @@ namespace Dumux { /*! * \ingroup BoxStokesModel * \brief Adaption of the box scheme to the Stokes model. * \brief Adaptation of the box scheme to the Stokes model. * * This model implements laminar Stokes flow of a single fluid, solving the momentum balance equation * \f[ \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t} + \boldsymbol{\nabla} \boldsymbol{\cdot} \left(p_g {\bf {I}} - \mu_g \left(\boldsymbol{\nabla} \boldsymbol{v}_g + \boldsymbol{\nabla} \boldsymbol{v}_g^T\right)\right) - \varrho_g {\bf g} = 0, * \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t} * + \text{div} \left( p_g {\bf {I}} * - \mu_g \left( \textbf{grad}\, \boldsymbol{v}_g * + \textbf{grad}\, \boldsymbol{v}_g^T \right) \right) * - \varrho_g {\bf g} = 0 * \f] * * and the mass balance equation * \f[ \frac{\partial \varrho_g}{\partial t} + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0. * \f] * * By setting the property EnableNavierStokes to true the Navier-Stokes * equation can be solved. In this case an additional term * \f[ * + \varrho_g \left(\boldsymbol{v}_g \boldsymbol{\cdot} \boldsymbol{\nabla} \right) \boldsymbol{v}_g * + \text{div} \left( \varrho_g \boldsymbol{v}_g \boldsymbol{v}_g \right) * \f] * is added to the momentum balance equation. * * The mass balance equation: * \f[ * \frac{\partial \varrho_g}{\partial t} * + \text{div} \left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0 * \f] * * This is discretized by a fully-coupled vertex-centered finite volume * (box) scheme in space and by the implicit Euler method in time. */ ... ...
 ... ... @@ -34,38 +34,46 @@ namespace Dumux { /*! * \ingroup BoxStokesncModel * \brief Adaptation of the BOX scheme to the compositional Stokes model. * \brief Adaptation of the box scheme to the compositional Stokes model. * * This model implements an isothermal n-component Stokes flow of a fluid * solving a momentum balance, a mass balance and a conservation equation for each * component. When using mole fractions naturally the densities represent molar * densites * solving a momentum balance, a mass balance and conservation equations for \f$n-1\f$ * components. When using mole fractions naturally the densities represent molar * densities * * Momentum Balance: * The momentum balance: * \f[ \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t} + \boldsymbol{\nabla} \boldsymbol{\cdot} \left(p_g {\bf {I}} - \mu_g \left(\boldsymbol{\nabla} \boldsymbol{v}_g + \boldsymbol{\nabla} \boldsymbol{v}_g^T\right)\right) - \varrho_g {\bf g} = 0, * \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t} * + \text{div} \left( p_g {\bf {I}} * - \mu_g \left( \textbf{grad}\, \boldsymbol{v}_g * + \textbf{grad}\, \boldsymbol{v}_g^T \right) \right) * - \varrho_g {\bf g} = 0 * \f] * By setting the property EnableNavierStokes to true the Navier-Stokes * equation can be solved. In this case an additional term * \f[ * + \text{div} \left( \varrho_g \boldsymbol{v}_g \boldsymbol{v}_g \right) * \f] * is added to the momentum balance equation. * * Mass balance equation: * The mass balance equation: * \f[ \frac{\partial \varrho_g}{\partial t} + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0 * \frac{\partial \varrho_g}{\partial t} * + \text{div} \left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0 * \f] * * Component mass balance equations: * The component mass balance equations: * \f[ \frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t} + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa - D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \boldsymbol{\nabla} X_g^\kappa \right) - q_g^\kappa = 0 * \frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t} * + \text{div} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa * - D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \textbf{grad}\, x_g^\kappa \right) * - q_g^\kappa = 0 * \f] * Please note that, even though it is n-component model, the diffusive * fluxes are still calculated with binary diffusion. * * This is discretized using a fully-coupled vertex * centered finite volume (box) scheme as spatial and * the implicit Euler method in time. * This is discretized by a fully-coupled vertex-centered finite volume * (box) scheme in space and by the implicit Euler method in time. */ template class StokesncModel : public StokesModel ... ...
 ... ... @@ -19,8 +19,8 @@ /*! * \file * * \brief Adaption of the BOX scheme to the non-isothermal * compositional stokes model (with n components). * \brief Adaptation of the box scheme to the non-isothermal * n-component Stokes model. */ #ifndef DUMUX_STOKESNCNI_MODEL_HH #define DUMUX_STOKESNCNI_MODEL_HH ... ... @@ -35,46 +35,55 @@ namespace Dumux { /*! * \ingroup BoxStokesncniModel * \brief Adaption of the BOX scheme to the non-isothermal compositional n-component Stokes model. * \brief Adaptation of the box scheme to the non-isothermal * n-component Stokes model. * * This model implements a non-isothermal n-component Stokes flow of a fluid * solving a momentum balance, a mass balance, a conservation equation for one component, * solving a momentum balance, a mass balance, conservation equations for \f$n-1\f$ components, * and one balance equation for the energy. * * Momentum Balance: * The momentum balance: * \f[ \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t} + \boldsymbol{\nabla} \boldsymbol{\cdot} \left(p_g {\bf {I}} - \mu_g \left(\boldsymbol{\nabla} \boldsymbol{v}_g + \boldsymbol{\nabla} \boldsymbol{v}_g^T\right)\right) - \varrho_g {\bf g} = 0, * \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t} * + \text{div} \left( p_g {\bf {I}} * - \mu_g \left( \textbf{grad}\, \boldsymbol{v}_g * + \textbf{grad}\, \boldsymbol{v}_g^T \right) \right) * - \varrho_g {\bf g} = 0 * \f] * * Mass balance equation: * By setting the property EnableNavierStokes to true the Navier-Stokes * equation can be solved. In this case an additional term * \f[ \frac{\partial \varrho_g}{\partial t} + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0 * + \text{div} \left( \varrho_g \boldsymbol{v}_g \boldsymbol{v}_g \right) * \f] * is added to the momentum balance equation. * * Component mass balance equation: * The mass balance equation: * \f[ \frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t} + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa - D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \boldsymbol{\nabla} x_g^\kappa \right) - q_g^\kappa = 0 * \frac{\partial \varrho_g}{\partial t} * + \text{div} \left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0 * \f] * * Energy balance equation: * The component mass balance equations: * \f[ \frac{\partial (\varrho_g u_g)}{\partial t} + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_g h_g {\boldsymbol{v}}_g - \sum_\kappa \left[ h^\kappa_g D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \nabla x^\kappa_g \right] - \lambda_g \boldsymbol{\nabla} T \right) - q_T = 0 * \frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t} * + \text{div} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa * - D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \textbf{grad}\, x_g^\kappa \right) * - q_g^\kappa = 0 * \f] * Please note that, even though it is n-component model, the diffusive * fluxes are still calculated with binary diffusion. * * This is discretized using a fully-coupled vertex * centered finite volume (box) scheme as spatial and * the implicit Euler method as temporal discretization. * The energy balance equation: * \f[ * \frac{\partial (\varrho_g u_g)}{\partial t} * + \text{div} \left( \varrho_g h_g {\boldsymbol{v}}_g * - \sum_\kappa \left[ h^\kappa_g D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} * \textbf{grad}\, x^\kappa_g \right] * - \lambda_g \textbf{grad}\, T \right) - q_T = 0 * \f] * * This is discretized by a fully-coupled vertex-centered finite volume * (box) scheme in space and by the implicit Euler method in time. */ template class StokesncniModel : public StokesncModel ... ...
 ... ... @@ -43,21 +43,21 @@ namespace Dumux * Mass balance: * \f[ * \frac{\partial \varrho_\textrm{g}}{\partial t} * + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right) * + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} \right) * - q_\textrm{g} = 0 * \f] * * Momentum Balance: * \f[ * \frac{\partial \left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)}{\partial t} * + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( * + \text{div} \left( * \varrho_\textrm{g} {\boldsymbol{v}_\textrm{g} {\boldsymbol{v}}_\textrm{g}} * - \left[ \mu_\textrm{g} + \mu_\textrm{g,t} \right] * \left(\boldsymbol{\nabla} \boldsymbol{v}_\textrm{g} * + \boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}^T \right) * \left( \textbf{grad}\, \boldsymbol{v}_\textrm{g} * + \textbf{grad}\, \boldsymbol{v}_\textrm{g}^T \right) * \right) * + \left(p_\textrm{g} {\bf {I}} \right) * - \varrho_\textrm{g} {\bf g} = 0, * - \varrho_\textrm{g} {\bf g} = 0 * \f] * * This is discretized by a fully-coupled vertex-centered finite volume ... ...
 ... ... @@ -42,31 +42,33 @@ namespace Dumux * Mass balance: * \f[ * \frac{\partial \varrho_\textrm{g}}{\partial t} * + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right) * + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} \right) * - q_\textrm{g} = 0 * \f] * * Momentum Balance: * \f[ * \frac{\partial \left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)}{\partial t} * + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( * + \text{div} \left( * \varrho_\textrm{g} {\boldsymbol{v}_\textrm{g} {\boldsymbol{v}}_\textrm{g}} * - \left[ \mu_\textrm{g} + \mu_\textrm{g,t} \right] * \left(\boldsymbol{\nabla} \boldsymbol{v}_\textrm{g} * + \boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}^T \right) * \left( \textbf{grad}\, \boldsymbol{v}_\textrm{g} * + \textbf{grad}\, \boldsymbol{v}_\textrm{g}^T \right) * \right) * + \left(p_\textrm{g} {\bf {I}} \right) * - \varrho_\textrm{g} {\bf g} = 0, * - \varrho_\textrm{g} {\bf g} = 0 * \f] * * Component mass balance equations: * \f[ * \frac{\partial \left(\varrho_\textrm{g} X_\textrm{g}^\kappa\right)}{\partial t} * + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa * + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa * - \left[ D^\kappa_\textrm{g} + D^\kappa_\textrm{g,t} \right] * \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \boldsymbol{\nabla} x_\textrm{g}^\kappa \right) * \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \textbf{grad}\, x_\textrm{g}^\kappa \right) * - q_\textrm{g}^\kappa = 0 * \f] * Please note that, even though it is n-component model, the diffusive * fluxes are still calculated with binary diffusion. * * This is discretized by a fully-coupled vertex-centered finite volume * (box) scheme in space and by the implicit Euler method in time. ... ...
 ... ... @@ -43,41 +43,43 @@ namespace Dumux * Mass balance: * \f[ * \frac{\partial \varrho_\textrm{g}}{\partial t} * + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right) * + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} \right) * - q_\textrm{g} = 0 * \f] * * Momentum Balance: * \f[ * \frac{\partial \left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)}{\partial t} * + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( * + \text{div} \left( * \varrho_\textrm{g} {\boldsymbol{v}_\textrm{g} {\boldsymbol{v}}_\textrm{g}} * - \left[ \mu_\textrm{g} + \mu_\textrm{g,t} \right] * \left(\boldsymbol{\nabla} \boldsymbol{v}_\textrm{g} * + \boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}^T \right) * \left( \textbf{grad}\, \boldsymbol{v}_\textrm{g} * + \textbf{grad}\, \boldsymbol{v}_\textrm{g}^T \right) * \right) * + \left(p_\textrm{g} {\bf {I}} \right) * - \varrho_\textrm{g} {\bf g} = 0, * - \varrho_\textrm{g} {\bf g} = 0 * \f] * * Component mass balance equations: * \f[ * \frac{\partial \left(\varrho_\textrm{g} X_\textrm{g}^\kappa\right)}{\partial t} * + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa * + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa * - \left[ D^\kappa_\textrm{g} + D^\kappa_\textrm{g,t} \right] * \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \boldsymbol{\nabla} x_\textrm{g}^\kappa \right) * \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \textbf{grad}\, x_\textrm{g}^\kappa \right) * - q_\textrm{g}^\kappa = 0 * \f] * * Energy balance equation: * \f[ * \frac{\partial (\varrho_\textrm{g} u_\textrm{g})}{\partial t} * + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_\textrm{g} h_\textrm{g} {\boldsymbol{v}}_\textrm{g} * + \text{div} \left( \varrho_\textrm{g} h_\textrm{g} {\boldsymbol{v}}_\textrm{g} * - \sum_\kappa \left( h^\kappa_\textrm{g} \left[ D^\kappa_\textrm{g} + D^\kappa_\textrm{g,t} \right] * \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \nabla x^\kappa_\textrm{g} \right) * - \left[ \lambda_\textrm{g} + \lambda_\textrm{g,t} \right] \boldsymbol{\nabla} T \right) * \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \textbf{grad}\, x^\kappa_\textrm{g} \right) * - \left[ \lambda_\textrm{g} + \lambda_\textrm{g,t} \right] \textbf{grad}\, T \right) * - q_\textrm{T} = 0 * \f] * Please note that, even though it is n-component model, the diffusive * fluxes are still calculated with binary diffusion. * * This is discretized by a fully-coupled vertex-centered finite volume * (box) scheme in space and by the implicit Euler method in time. ... ...
 ... ... @@ -38,10 +38,10 @@ class H2O_Air { public: /*! * \brief Henry coefficent \f$\mathrm{[N/m^2]}\f$ for air in liquid water. * \brief Henry coefficient \f$\mathrm{[N/m^2]}\f$ for air in liquid water. * \param temperature the temperature \f$\mathrm{[K]}\f$ * * Henry coefficent See: * Henry coefficient See: * Stefan Finsterle, 1993 * Inverse Modellierung zur Bestimmung hydrogeologischer Parameter eines Zweiphasensystems * page 29 Formula (2.9) (nach Tchobanoglous & Schroeder, 1985) ... ... @@ -56,11 +56,12 @@ public: } /*! * \brief Binary diffusion coefficent \f$\mathrm{[m^2/s]}\f$ for molecular water and air * \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and air * * \param temperature the temperature \f$\mathrm{[K]}\f$ * \param pressure the phase pressure \f$\mathrm{[Pa]}\f$ * Vargaftik : Tables on the thermophysical properties of liquids and gases. John Wiley & * Sons, New York, 1975. * Vargaftik: Tables on the thermophysical properties of liquids and gases. * John Wiley & Sons, New York, 1975. * * Walker, Sabey, Hampton: Studies of heat transfer and water migration in soils. * Dep. of Agricultural and Chemical Engineering, Colorado State University, ... ... @@ -83,7 +84,7 @@ public: /*! * Lacking better data on water-air diffusion in liquids, we use at the * moment the diffusion coefficient of the air's main component nitrogen!! * \brief Diffusion coefficent \f$\mathrm{[m^2/s]}\f$ for molecular nitrogen in liquid water. * \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular nitrogen in liquid water. * * \param temperature the temperature \f$\mathrm{[K]}\f$ * \param pressure the phase pressure \f$\mathrm{[Pa]}\f$ ... ... @@ -99,7 +100,7 @@ public: * R. Reid et al.: "The properties of Gases and Liquids", 4th edition, * pp. 599, McGraw-Hill, 1987 * * R. Ferrell, D. Himmelblau: "Diffusion Coeffients of Nitrogen and * R. Ferrell, D. Himmelblau: "Diffusion Coefficients of Nitrogen and * Oxygen in Water", Journal of Chemical Engineering and Data, * Vol. 12, No. 1, pp. 111-115, 1967 */ ... ...
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment