Commit ff50a4c3 authored by Thomas Fetzer's avatar Thomas Fetzer
Browse files

[doxygen,freeflow]

- adaption to style of other models (replaced use of \nabla by use of div or grad)
- replaced use of mass fraction with mole fraction in diffusion term and added
  comment about use of binary diffusion
- fixed typos

[doxygen,material]
- fixed typos and line break



git-svn-id: svn://svn.iws.uni-stuttgart.de/DUMUX/dumux/trunk@15207 2fb0f335-1f38-0410-981e-8018bf24f1b0
parent 272e9bde
......@@ -38,29 +38,29 @@ namespace Dumux
{
/*!
* \ingroup BoxStokesModel
* \brief Adaption of the box scheme to the Stokes model.
* \brief Adaptation of the box scheme to the Stokes model.
*
* This model implements laminar Stokes flow of a single fluid, solving the momentum balance equation
* \f[
\frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
+ \boldsymbol{\nabla} \boldsymbol{\cdot} \left(p_g {\bf {I}}
- \mu_g \left(\boldsymbol{\nabla} \boldsymbol{v}_g
+ \boldsymbol{\nabla} \boldsymbol{v}_g^T\right)\right)
- \varrho_g {\bf g} = 0,
* \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
* + \text{div} \left( p_g {\bf {I}}
* - \mu_g \left( \textbf{grad}\, \boldsymbol{v}_g
* + \textbf{grad}\, \boldsymbol{v}_g^T \right) \right)
* - \varrho_g {\bf g} = 0
* \f]
*
* and the mass balance equation
* \f[
\frac{\partial \varrho_g}{\partial t} + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0.
* \f]
*
* By setting the property <code>EnableNavierStokes</code> to <code>true</code> the Navier-Stokes
* equation can be solved. In this case an additional term
* \f[
* + \varrho_g \left(\boldsymbol{v}_g \boldsymbol{\cdot} \boldsymbol{\nabla} \right) \boldsymbol{v}_g
* + \text{div} \left( \varrho_g \boldsymbol{v}_g \boldsymbol{v}_g \right)
* \f]
* is added to the momentum balance equation.
*
* The mass balance equation:
* \f[
* \frac{\partial \varrho_g}{\partial t}
* + \text{div} \left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0
* \f]
*
* This is discretized by a fully-coupled vertex-centered finite volume
* (box) scheme in space and by the implicit Euler method in time.
*/
......
......@@ -34,38 +34,46 @@
namespace Dumux {
/*!
* \ingroup BoxStokesncModel
* \brief Adaptation of the BOX scheme to the compositional Stokes model.
* \brief Adaptation of the box scheme to the compositional Stokes model.
*
* This model implements an isothermal n-component Stokes flow of a fluid
* solving a momentum balance, a mass balance and a conservation equation for each
* component. When using mole fractions naturally the densities represent molar
* densites
* solving a momentum balance, a mass balance and conservation equations for \f$n-1\f$
* components. When using mole fractions naturally the densities represent molar
* densities
*
* Momentum Balance:
* The momentum balance:
* \f[
\frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
+ \boldsymbol{\nabla} \boldsymbol{\cdot} \left(p_g {\bf {I}}
- \mu_g \left(\boldsymbol{\nabla} \boldsymbol{v}_g
+ \boldsymbol{\nabla} \boldsymbol{v}_g^T\right)\right)
- \varrho_g {\bf g} = 0,
* \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
* + \text{div} \left( p_g {\bf {I}}
* - \mu_g \left( \textbf{grad}\, \boldsymbol{v}_g
* + \textbf{grad}\, \boldsymbol{v}_g^T \right) \right)
* - \varrho_g {\bf g} = 0
* \f]
* By setting the property <code>EnableNavierStokes</code> to <code>true</code> the Navier-Stokes
* equation can be solved. In this case an additional term
* \f[
* + \text{div} \left( \varrho_g \boldsymbol{v}_g \boldsymbol{v}_g \right)
* \f]
* is added to the momentum balance equation.
*
* Mass balance equation:
* The mass balance equation:
* \f[
\frac{\partial \varrho_g}{\partial t} + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0
* \frac{\partial \varrho_g}{\partial t}
* + \text{div} \left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0
* \f]
*
* Component mass balance equations:
* The component mass balance equations:
* \f[
\frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t}
+ \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa
- D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \boldsymbol{\nabla} X_g^\kappa \right)
- q_g^\kappa = 0
* \frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t}
* + \text{div} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa
* - D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \textbf{grad}\, x_g^\kappa \right)
* - q_g^\kappa = 0
* \f]
* Please note that, even though it is n-component model, the diffusive
* fluxes are still calculated with binary diffusion.
*
* This is discretized using a fully-coupled vertex
* centered finite volume (box) scheme as spatial and
* the implicit Euler method in time.
* This is discretized by a fully-coupled vertex-centered finite volume
* (box) scheme in space and by the implicit Euler method in time.
*/
template<class TypeTag>
class StokesncModel : public StokesModel<TypeTag>
......
......@@ -19,8 +19,8 @@
/*!
* \file
*
* \brief Adaption of the BOX scheme to the non-isothermal
* compositional stokes model (with n components).
* \brief Adaptation of the box scheme to the non-isothermal
* n-component Stokes model.
*/
#ifndef DUMUX_STOKESNCNI_MODEL_HH
#define DUMUX_STOKESNCNI_MODEL_HH
......@@ -35,46 +35,55 @@
namespace Dumux {
/*!
* \ingroup BoxStokesncniModel
* \brief Adaption of the BOX scheme to the non-isothermal compositional n-component Stokes model.
* \brief Adaptation of the box scheme to the non-isothermal
* n-component Stokes model.
*
* This model implements a non-isothermal n-component Stokes flow of a fluid
* solving a momentum balance, a mass balance, a conservation equation for one component,
* solving a momentum balance, a mass balance, conservation equations for \f$n-1\f$ components,
* and one balance equation for the energy.
*
* Momentum Balance:
* The momentum balance:
* \f[
\frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
+ \boldsymbol{\nabla} \boldsymbol{\cdot} \left(p_g {\bf {I}}
- \mu_g \left(\boldsymbol{\nabla} \boldsymbol{v}_g
+ \boldsymbol{\nabla} \boldsymbol{v}_g^T\right)\right)
- \varrho_g {\bf g} = 0,
* \frac{\partial \left(\varrho_g {\boldsymbol{v}}_g\right)}{\partial t}
* + \text{div} \left( p_g {\bf {I}}
* - \mu_g \left( \textbf{grad}\, \boldsymbol{v}_g
* + \textbf{grad}\, \boldsymbol{v}_g^T \right) \right)
* - \varrho_g {\bf g} = 0
* \f]
*
* Mass balance equation:
* By setting the property <code>EnableNavierStokes</code> to <code>true</code> the Navier-Stokes
* equation can be solved. In this case an additional term
* \f[
\frac{\partial \varrho_g}{\partial t} + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0
* + \text{div} \left( \varrho_g \boldsymbol{v}_g \boldsymbol{v}_g \right)
* \f]
* is added to the momentum balance equation.
*
* Component mass balance equation:
* The mass balance equation:
* \f[
\frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t}
+ \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa
- D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \boldsymbol{\nabla} x_g^\kappa \right)
- q_g^\kappa = 0
* \frac{\partial \varrho_g}{\partial t}
* + \text{div} \left(\varrho_g {\boldsymbol{v}}_g\right) - q_g = 0
* \f]
*
* Energy balance equation:
* The component mass balance equations:
* \f[
\frac{\partial (\varrho_g u_g)}{\partial t}
+ \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_g h_g {\boldsymbol{v}}_g
- \sum_\kappa \left[ h^\kappa_g D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \nabla x^\kappa_g \right]
- \lambda_g \boldsymbol{\nabla} T \right) - q_T = 0
* \frac{\partial \left(\varrho_g X_g^\kappa\right)}{\partial t}
* + \text{div} \left( \varrho_g {\boldsymbol{v}}_g X_g^\kappa
* - D^\kappa_g \varrho_g \frac{M^\kappa}{M_g} \textbf{grad}\, x_g^\kappa \right)
* - q_g^\kappa = 0
* \f]
* Please note that, even though it is n-component model, the diffusive
* fluxes are still calculated with binary diffusion.
*
* This is discretized using a fully-coupled vertex
* centered finite volume (box) scheme as spatial and
* the implicit Euler method as temporal discretization.
* The energy balance equation:
* \f[
* \frac{\partial (\varrho_g u_g)}{\partial t}
* + \text{div} \left( \varrho_g h_g {\boldsymbol{v}}_g
* - \sum_\kappa \left[ h^\kappa_g D^\kappa_g \varrho_g \frac{M^\kappa}{M_g}
* \textbf{grad}\, x^\kappa_g \right]
* - \lambda_g \textbf{grad}\, T \right) - q_T = 0
* \f]
*
* This is discretized by a fully-coupled vertex-centered finite volume
* (box) scheme in space and by the implicit Euler method in time.
*/
template<class TypeTag>
class StokesncniModel : public StokesncModel<TypeTag>
......
......@@ -43,21 +43,21 @@ namespace Dumux
* Mass balance:
* \f[
* \frac{\partial \varrho_\textrm{g}}{\partial t}
* + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)
* + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} \right)
* - q_\textrm{g} = 0
* \f]
*
* Momentum Balance:
* \f[
* \frac{\partial \left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)}{\partial t}
* + \boldsymbol{\nabla} \boldsymbol{\cdot} \left(
* + \text{div} \left(
* \varrho_\textrm{g} {\boldsymbol{v}_\textrm{g} {\boldsymbol{v}}_\textrm{g}}
* - \left[ \mu_\textrm{g} + \mu_\textrm{g,t} \right]
* \left(\boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}
* + \boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}^T \right)
* \left( \textbf{grad}\, \boldsymbol{v}_\textrm{g}
* + \textbf{grad}\, \boldsymbol{v}_\textrm{g}^T \right)
* \right)
* + \left(p_\textrm{g} {\bf {I}} \right)
* - \varrho_\textrm{g} {\bf g} = 0,
* - \varrho_\textrm{g} {\bf g} = 0
* \f]
*
* This is discretized by a fully-coupled vertex-centered finite volume
......
......@@ -42,31 +42,33 @@ namespace Dumux
* Mass balance:
* \f[
* \frac{\partial \varrho_\textrm{g}}{\partial t}
* + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)
* + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} \right)
* - q_\textrm{g} = 0
* \f]
*
* Momentum Balance:
* \f[
* \frac{\partial \left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)}{\partial t}
* + \boldsymbol{\nabla} \boldsymbol{\cdot} \left(
* + \text{div} \left(
* \varrho_\textrm{g} {\boldsymbol{v}_\textrm{g} {\boldsymbol{v}}_\textrm{g}}
* - \left[ \mu_\textrm{g} + \mu_\textrm{g,t} \right]
* \left(\boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}
* + \boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}^T \right)
* \left( \textbf{grad}\, \boldsymbol{v}_\textrm{g}
* + \textbf{grad}\, \boldsymbol{v}_\textrm{g}^T \right)
* \right)
* + \left(p_\textrm{g} {\bf {I}} \right)
* - \varrho_\textrm{g} {\bf g} = 0,
* - \varrho_\textrm{g} {\bf g} = 0
* \f]
*
* Component mass balance equations:
* \f[
* \frac{\partial \left(\varrho_\textrm{g} X_\textrm{g}^\kappa\right)}{\partial t}
* + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa
* + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa
* - \left[ D^\kappa_\textrm{g} + D^\kappa_\textrm{g,t} \right]
* \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \boldsymbol{\nabla} x_\textrm{g}^\kappa \right)
* \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \textbf{grad}\, x_\textrm{g}^\kappa \right)
* - q_\textrm{g}^\kappa = 0
* \f]
* Please note that, even though it is n-component model, the diffusive
* fluxes are still calculated with binary diffusion.
*
* This is discretized by a fully-coupled vertex-centered finite volume
* (box) scheme in space and by the implicit Euler method in time.
......
......@@ -43,41 +43,43 @@ namespace Dumux
* Mass balance:
* \f[
* \frac{\partial \varrho_\textrm{g}}{\partial t}
* + \boldsymbol{\nabla}\boldsymbol{\cdot}\left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)
* + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} \right)
* - q_\textrm{g} = 0
* \f]
*
* Momentum Balance:
* \f[
* \frac{\partial \left(\varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g}\right)}{\partial t}
* + \boldsymbol{\nabla} \boldsymbol{\cdot} \left(
* + \text{div} \left(
* \varrho_\textrm{g} {\boldsymbol{v}_\textrm{g} {\boldsymbol{v}}_\textrm{g}}
* - \left[ \mu_\textrm{g} + \mu_\textrm{g,t} \right]
* \left(\boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}
* + \boldsymbol{\nabla} \boldsymbol{v}_\textrm{g}^T \right)
* \left( \textbf{grad}\, \boldsymbol{v}_\textrm{g}
* + \textbf{grad}\, \boldsymbol{v}_\textrm{g}^T \right)
* \right)
* + \left(p_\textrm{g} {\bf {I}} \right)
* - \varrho_\textrm{g} {\bf g} = 0,
* - \varrho_\textrm{g} {\bf g} = 0
* \f]
*
* Component mass balance equations:
* \f[
* \frac{\partial \left(\varrho_\textrm{g} X_\textrm{g}^\kappa\right)}{\partial t}
* + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa
* + \text{div} \left( \varrho_\textrm{g} {\boldsymbol{v}}_\textrm{g} X_\textrm{g}^\kappa
* - \left[ D^\kappa_\textrm{g} + D^\kappa_\textrm{g,t} \right]
* \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \boldsymbol{\nabla} x_\textrm{g}^\kappa \right)
* \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \textbf{grad}\, x_\textrm{g}^\kappa \right)
* - q_\textrm{g}^\kappa = 0
* \f]
*
* Energy balance equation:
* \f[
* \frac{\partial (\varrho_\textrm{g} u_\textrm{g})}{\partial t}
* + \boldsymbol{\nabla} \boldsymbol{\cdot} \left( \varrho_\textrm{g} h_\textrm{g} {\boldsymbol{v}}_\textrm{g}
* + \text{div} \left( \varrho_\textrm{g} h_\textrm{g} {\boldsymbol{v}}_\textrm{g}
* - \sum_\kappa \left( h^\kappa_\textrm{g} \left[ D^\kappa_\textrm{g} + D^\kappa_\textrm{g,t} \right]
* \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \nabla x^\kappa_\textrm{g} \right)
* - \left[ \lambda_\textrm{g} + \lambda_\textrm{g,t} \right] \boldsymbol{\nabla} T \right)
* \varrho_\textrm{g} \frac{M^\kappa}{M_\textrm{g}} \textbf{grad}\, x^\kappa_\textrm{g} \right)
* - \left[ \lambda_\textrm{g} + \lambda_\textrm{g,t} \right] \textbf{grad}\, T \right)
* - q_\textrm{T} = 0
* \f]
* Please note that, even though it is n-component model, the diffusive
* fluxes are still calculated with binary diffusion.
*
* This is discretized by a fully-coupled vertex-centered finite volume
* (box) scheme in space and by the implicit Euler method in time.
......
......@@ -38,10 +38,10 @@ class H2O_Air
{
public:
/*!
* \brief Henry coefficent \f$\mathrm{[N/m^2]}\f$ for air in liquid water.
* \brief Henry coefficient \f$\mathrm{[N/m^2]}\f$ for air in liquid water.
* \param temperature the temperature \f$\mathrm{[K]}\f$
*
* Henry coefficent See:
* Henry coefficient See:
* Stefan Finsterle, 1993
* Inverse Modellierung zur Bestimmung hydrogeologischer Parameter eines Zweiphasensystems
* page 29 Formula (2.9) (nach Tchobanoglous & Schroeder, 1985)
......@@ -56,11 +56,12 @@ public:
}
/*!
* \brief Binary diffusion coefficent \f$\mathrm{[m^2/s]}\f$ for molecular water and air
* \brief Binary diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular water and air
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
* Vargaftik : Tables on the thermophysical properties of liquids and gases. John Wiley & * Sons, New York, 1975.
* Vargaftik: Tables on the thermophysical properties of liquids and gases.
* John Wiley & Sons, New York, 1975.
*
* Walker, Sabey, Hampton: Studies of heat transfer and water migration in soils.
* Dep. of Agricultural and Chemical Engineering, Colorado State University,
......@@ -83,7 +84,7 @@ public:
/*!
* Lacking better data on water-air diffusion in liquids, we use at the
* moment the diffusion coefficient of the air's main component nitrogen!!
* \brief Diffusion coefficent \f$\mathrm{[m^2/s]}\f$ for molecular nitrogen in liquid water.
* \brief Diffusion coefficient \f$\mathrm{[m^2/s]}\f$ for molecular nitrogen in liquid water.
*
* \param temperature the temperature \f$\mathrm{[K]}\f$
* \param pressure the phase pressure \f$\mathrm{[Pa]}\f$
......@@ -99,7 +100,7 @@ public:
* R. Reid et al.: "The properties of Gases and Liquids", 4th edition,
* pp. 599, McGraw-Hill, 1987
*
* R. Ferrell, D. Himmelblau: "Diffusion Coeffients of Nitrogen and
* R. Ferrell, D. Himmelblau: "Diffusion Coefficients of Nitrogen and
* Oxygen in Water", Journal of Chemical Engineering and Data,
* Vol. 12, No. 1, pp. 111-115, 1967
*/
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment